×

Geometric quantization for proper actions. (English) Zbl 1211.53101

The main purpose of this paper is to generalize the Guillemin-Sternberg geometric quantization conjecture [V. Guillemin and S. Sternberg, Invent. Math. 67, 515–538 (1982; Zbl 0503.58018)] to the case of non-compact spaces and group actions. For this purpose, a \(G\)-invariant index is generalized to the non-compact case and the main result, which might be thought of as a “quantization commutes with reduction” result, solves a conjecture of P. Hochs and N. P. Landsman [J. K-Theory 1, No. 3, 473–533 (2008; Zbl 1159.19004)]. Ulrich Bunke presents in an Appendix the \(KK\)-theoretic interpretation of the index introduced by the authors.

MSC:

53D50 Geometric quantization
53D20 Momentum maps; symplectic reduction
53C27 Spin and Spin\({}^c\) geometry
58J20 Index theory and related fixed-point theorems on manifolds

References:

[1] Bismut, J.-M.; Lebeau, G., Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math., 74 (1991), ii+298 pp. (1992) · Zbl 0784.32010
[2] Borthwick, D.; Uribe, A., Almost complex structures and geometric quantization, Math. Res. Lett., 3, 845-861 (1996) · Zbl 0872.58030
[3] Bourbaki, N., Intégration, Chapt. VII-VIII (1963), Hermann: Hermann Paris
[4] Braverman, M., Vanishing Theorems on Covering Manifolds, Contemp. Math., vol. 213 (1999), pp. 1-23 · Zbl 0940.32011
[5] Guillemin, V.; Sternberg, S., Geometric quantization and multiplicities of group representations, Invent. Math., 67, 3, 515-538 (1982) · Zbl 0503.58018
[6] Guillemin, V.; Sternberg, S.; Weitsman, J., Signature quantization, J. Differential Geom., 66, 139-168 (2004) · Zbl 1066.53139
[7] Hochs, P., Quantization commutes with reduction at discrete series representations of semisimple groups, Adv. Math., 222, 862-919 (2009) · Zbl 1193.22012
[9] Hochs, P.; Landsman, N. P., The Guillemin-Sternberg conjecture for noncompact groups and spaces, J. \(K\)-Theory, 1, 473-533 (2008) · Zbl 1159.19004
[10] Kasparov, G. G., Index of invariant elliptic operators, \(K\)-theory and representations of Lie groups, Dokl. Akad. Nauk SSSR, 268, 3, 533-537 (1983) · Zbl 0526.22007
[11] Ma, X.; Marinescu, G., The \(Spin^c\) Dirac operator on high tensor powers of a line bundle, Math. Z., 240, 651-664 (2002) · Zbl 1027.58025
[12] Meinrenken, E., Symplectic surgery and the \(Spin^c\)-Dirac operator, Adv. Math., 134, 240-277 (1998) · Zbl 0929.53045
[13] Palais, R., On the existence of slices for actions of non-compact Lie groups, Ann. of Math., 73, 295-323 (1961) · Zbl 0103.01802
[14] Pierrot, F., Une généralisation en \(K\)-théorie du théorème d’indice \(L^2\) d’Atiyah, Mem. Soc. Math. Fr., 89 (2002)
[15] Phillips, N. C., Equivariant \(K\)-Theory for Proper Actions (1989), Longman Scientific & Technical · Zbl 0684.55018
[16] Tian, Y.; Zhang, W., An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math., 132, 2, 229-259 (1998) · Zbl 0944.53047
[17] Tian, Y.; Zhang, W., Symplectic reduction and a weighted multiplicity formula for twisted \(Spin^c\)-Dirac operators, Asian J. Math., 2, 591-608 (1998) · Zbl 0952.53041
[18] Vergne, M., Quantification géométrique et réduction symplectique, Séminaire Bourbaki, vol. 2000/2001. Séminaire Bourbaki, vol. 2000/2001, Astérisque, 282 (2002), Exp. No. 888, viii, 249-278 · Zbl 1037.53062
[19] Weinstein, A., Poisson geometry of discrete series orbits, and momentum convexity for noncompact group actions, Lett. Math. Phys., 56, 1, 17-30 (2001) · Zbl 1010.53060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.