×

Von Neumann dimension, Hodge index theorem and geometric applications. (English) Zbl 1435.32027

Summary: A reformulation of the Hodge index theorem within the framework of Atiyah’s \(L^2\)-index theory is provided. More precisely, given a compact Kähler manifold \((M, h)\) of even complex dimension \(2m,\) we prove that \[\sigma (M)=\!\!\sum _{p,q=0}^{2m}\!(-1)^ph_{(2),\Gamma }^{p,q}(M) \] where \(\sigma (M)\) is the signature of \(M\) and \(h_{(2),\Gamma }^{p,q}(M)\) are the \(L^2\)-Hodge numbers of \(M\) with respect to a Galois covering having \(\Gamma\) as group of deck transformations. Likewise we also prove an \(L^2\)-version of the Frölicher index theorem. Afterwards we give some applications of these two theorems and finally we conclude this paper by collecting other properties of the \(L^2\)-Hodge numbers.

MSC:

32Q15 Kähler manifolds
32Q05 Negative curvature complex manifolds
58J20 Index theory and related fixed-point theorems on manifolds
32J27 Compact Kähler manifolds: generalizations, classification

References:

[1] Atiyah, M.F.: Elliptic operators, discrete groups and von Neumann algebras. In: Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974). Astérisque, vol. 32-33, pp. 43-72. Société Mathématique de France, Paris (1976) · Zbl 0323.58015
[2] Bei, F.: Degenerating Hermitian metrics and spectral geometry of the canonical bundle. Adv. Math. 328, 750-800 (2018) · Zbl 1408.32009 · doi:10.1016/j.aim.2018.01.021
[3] Bei, F., Güneysu, \[B.: q\] q-parabolicity of stratified pseudomanifolds and other singular spaces. Ann. Global Anal. Geom. 51(3), 267-286 (2017) · Zbl 1369.58005 · doi:10.1007/s10455-016-9534-0
[4] Brüning, J., Lesch, M.: Hilbert complexes. J. Funct. Anal. 108(1), 88-132 (1992) · Zbl 0826.46065 · doi:10.1016/0022-1236(92)90147-B
[5] Cao, J., Xavier, F.: Kähler parabolicity and the Euler number of compact manifolds of non-positive sectional curvature. Math. Ann. 319(3), 483-491 (2001) · Zbl 0992.53031 · doi:10.1007/PL00004444
[6] Dodziuk, J.: Vanishing theorems for square-integrable harmonic forms. Proc. Indian Acad. Sci. Math. Sci. 90(1), 21-27 (1981) · Zbl 0479.53035 · doi:10.1007/BF02867014
[7] Grant, C., Milman, P.: Metrics for singular analytic spaces. Pacific J. Math. 168(1), 61-156 (1995) · Zbl 0822.32004 · doi:10.2140/pjm.1995.168.61
[8] Gromov, M.: Kähler hyperbolicity and \[L_2\] L2-Hodge theory. J. Differential Geom. 33(1), 263-292 (1991) · Zbl 0719.53042 · doi:10.4310/jdg/1214446039
[9] Jost, J., Zuo, K.: Vanishing theorems for \[L^2\] L2-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry. Comm. Anal. Geom. 8(1), 1-30 (2000) · Zbl 0978.32024 · doi:10.4310/CAG.2000.v8.n1.a1
[10] Lück, \[W.: L^2\] L2-Invariants: Theory and Applications to Geometry and \[KK\]-Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44. Springer, Berlin (2002) · Zbl 1009.55001
[11] Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol. 254. Birkhäuser, Basel (2007) · Zbl 1135.32001
[12] Peternell, Th.: Modifications. In: Grauert, H., Peternell, Th., Remmert, R. (eds.) Several Complex Variables, VII. Encyclopaedia of Mathematical Sciences, vol. 74, pp. 285-317. Springer, Berlin (1994) · Zbl 0807.32028
[13] Roe, J.: Elliptic Operators, Topology and Asymptotic Methods. Pitman Research Notes in Mathematics Series, vol. 395, 2nd edn. Longman, Harlow (1998) · Zbl 0919.58060
[14] Ruppenthal, J.: Parabolicity of the regular locus of complex varieties. Proc. Amer. Math. Soc. 144(1), 225-233 (2016) · Zbl 1343.31006 · doi:10.1090/proc12718
[15] Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48-79 (1983) · Zbl 0515.58037 · doi:10.1016/0022-1236(83)90090-3
[16] Ueno, K.: Classification Theory of Algebraic Varieties and Compact Complex Spaces. Notes written in collaboration with P. Cherenack. Lecture Notes in Mathematics, vol. 439. Springer, Berlin (1975) · Zbl 0299.14007
[17] Wolf, J.A.: Essential self-adjointness for the Dirac operator and its square. Indiana Univ. Math. J. 22, 611-640 (1972/73) · Zbl 0263.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.