×

Degenerating Hermitian metrics and spectral geometry of the canonical bundle. (English) Zbl 1408.32009

Author’s abstract: Let \((X, h)\) be a compact and irreducible Hermitian complex space of complex dimension \(m\). In this paper we are interested in the Dolbeault operator acting on the space of \(L^2\) sections of the canonical bundle of \(\mathrm{reg}(X)\), the regular part of \(X\). More precisely let \(\overline{\mathfrak{d}}_{m, 0} : L^2 \Omega^{m, 0}(\mathrm{reg}(X), h) \rightarrow L^2 \Omega^{m, 1}(\mathrm{reg}(X), h)\) be an arbitrarily fixed closed extension of \(\overline{\partial}_{m, 0} : L^2 \Omega^{m, 0}(\mathrm{reg}(X), h) \rightarrow L^2 \Omega^{m, 1}(\mathrm{reg}(X), h)\) where the domain of the latter operator is \(\Omega_c^{m, 0}(\mathrm{reg}(X))\). We establish various properties such as closed range of \(\overline{\mathfrak{d}}_{m, 0}\), compactness of the inclusion \(\mathcal{D}(\overline{\mathfrak{d}}_{m, 0}) \hookrightarrow L^2 \Omega^{m, 0}(\mathrm{reg}(X), h)\) where \(\mathcal{D}(\overline{\mathfrak{d}}_{m, 0})\), the domain of \(\overline{\mathfrak{d}}_{m, 0}\), is endowed with the corresponding graph norm, and discreteness of the spectrum of the associated Hodge-Kodaira Laplacian \(\overline{\mathfrak{d}}_{m, 0}^\ast \circ \overline{\mathfrak{d}}_{m, 0}\) with an estimate for the growth of its eigenvalues. Several corollaries such as trace class property for the heat operator associated to \(\overline{\mathfrak{d}}_{m, 0}^\ast \circ \overline{\mathfrak{d}}_{m, 0}\), with an estimate for its trace, are derived. Finally in the last part we provide several applications to the Hodge-Kodaira Laplacian in the setting of both compact irreducible Hermitian complex spaces with isolated singularities and complex projective surfaces.

MSC:

32C15 Complex spaces
32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
32W50 Other partial differential equations of complex analysis in several variables
35P15 Estimates of eigenvalues in context of PDEs
58J35 Heat and other parabolic equation methods for PDEs on manifolds

References:

[1] Bei, F., Poincaré duality, Hilbert complexes and geometric applications, Adv. Math., 267, 121-175 (2014) · Zbl 1301.53031
[2] Bei, F., Sobolev spaces and Bochner Laplacian on complex projective varieties and stratified pseudomanifolds, J. Geom. Anal., 27, 1, 746-796 (2017) · Zbl 1365.58014
[3] Bei, F.; Gueneysu, B., \(q\)-Parabolicity of stratified pseudomanifolds and other singular spaces, Ann. Global Anal. Geom., 51, 3, 267-286 (2017) · Zbl 1369.58005
[4] Berline, N.; Getzler, E.; Vergne, M., Heat Kernels and Dirac Operators, Grundlehren Text Editions (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1037.58015
[5] Bierstone, E.; Milman, P. D., Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., 128, 2, 207-302 (1997) · Zbl 0896.14006
[6] Brüning, J.; Lesch, M., Hilbert complexes, J. Funct. Anal., 108, 1, 88-132 (1992) · Zbl 0826.46065
[7] Brüning, J.; Lesch, M., Kähler-Hodge theory for conformal complex cones, Geom. Funct. Anal., 3, 5, 439-473 (1993) · Zbl 0795.58003
[8] Brüning, J.; Lesch, M., On the spectral geometry of algebraic curves, J. Reine Angew. Math., 474, 25-66 (1996) · Zbl 0846.14018
[10] Cheeger, J.; Goresky, M.; MacPherson, R., \(L^2\)-cohomology and intersection homology of singular algebraic varieties, (Seminar on Differential Geometry. Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102 (1982), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 303-340 · Zbl 0503.14008
[11] Fischer, G., Complex Analytic Geometry, Lecture Notes in Mathematics, vol. 538 (1976), Springer-Verlag: Springer-Verlag Berlin, New York · Zbl 0343.32002
[12] Grant Melles, C.; Milman, P., Metrics for singular analytic spaces, Pacific J. Math., 168, 1, 61-156 (1995) · Zbl 0822.32004
[13] Grauert, H.; Remmert, R., Coherent Analytic Sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 265 (1984), Springer-Verlag: Springer-Verlag Berlin · Zbl 0537.32001
[14] Grieser, D.; Lesch, M., On the \(L^2\)-Stokes theorem and Hodge theory for singular algebraic varieties, Math. Nachr., 246/247, 68-82 (2002) · Zbl 1034.58019
[15] Haskell, P., \(L^2\)-Dolbeault complexes on singular curves and surfaces, Proc. Amer. Math. Soc., 107, 2, 517-526 (1989) · Zbl 0684.58040
[16] Hauser, H., The Hironaka theorem on resolution of singularities (or: A proof we always wanted to understand), Bull. Amer. Math. Soc. (N.S.), 40, 3, 323-403 (2003) · Zbl 1030.14007
[17] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II, Ann. of Math., 79, 109-326 (1964) · Zbl 0122.38603
[18] Hsiang, W. C.; Pati, V., \(L^2\)-cohomology of normal algebraic surfaces. I, Invent. Math., 81, 3, 395-412 (1985) · Zbl 0627.14016
[19] Huybrechts, D., Complex Geometry. An Introduction, Universitext (2005), Springer-Verlag: Springer-Verlag Berlin · Zbl 1055.14001
[20] Li, P.; Tian, G., On the heat kernel of the Bergmann metric on algebraic varieties, J. Amer. Math. Soc., 8, 4, 857-877 (1995) · Zbl 0864.58058
[21] Ma, X.; Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, vol. 254 (2007), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1135.32001
[22] MacPherson, R., Global questions in the topology of singular spaces, (Proceedings of the International Congress of Mathematicians, vols. 1, 2. Proceedings of the International Congress of Mathematicians, vols. 1, 2, Warsaw, 1983 (1984), PWN: PWN Warsaw), 213-235 · Zbl 0612.57012
[23] Nagase, M., On the heat operators of normal singular algebraic surfaces, J. Differential Geom., 28, 1, 37-57 (1988) · Zbl 0669.58034
[24] Ohsawa, T., Cheeger-Goreski-MacPherson’s conjecture for the varieties with isolated singularities, Math. Z., 206, 2, 219-224 (1991) · Zbl 0728.14022
[25] Ohsawa, T., \(L^2\) Approaches in Several Complex Variables. Development of Oka-Cartan Theory by \(L^2\) Estimates for the \(\overline{\partial} \)-Operator, Springer Monographs in Mathematics (2015), Springer: Springer Tokyo · Zbl 1355.32001
[26] Øvrelid, N.; Ruppenthal, J., \(L^2\)-properties of the \(\overline{\partial}\) and the \(\overline{\partial} \)-Neumann operator on spaces with isolated singularities, Math. Ann., 359, 3-4, 803-838 (2014) · Zbl 1300.32037
[27] Øvrelid, N.; Vassiliadou, S., Some \(L^2\) results for \(\overline{\partial}\) on projective varieties with general singularities, Amer. J. Math., 131, 1, 129-151 (2009) · Zbl 1172.32013
[28] Øvrelid, N.; Vassiliadou, S., \(L^2-\overline{\partial} \)-cohomology groups of some singular complex spaces, Invent. Math., 192, 2, 413-458 (2013) · Zbl 1279.32007
[29] Pardon, W. L.; Stern, M. A., \(L^2-\overline{\partial} \)-cohomology of complex projective varieties, J. Amer. Math. Soc., 4, 3, 603-621 (1991) · Zbl 0751.14011
[30] Pardon, W.; Stern, M., Pure Hodge structure on the \(L^2\)-cohomology of varieties with isolated singularities, J. Reine Angew. Math., 533, 55-80 (2001) · Zbl 0960.14009
[31] Pati, V., The heat trace on singular algebraic threefolds, J. Differential Geom., 37, 1, 245-261 (1993) · Zbl 0798.35062
[32] Roe, J., Elliptic Operators, Topology and Asymptotic Methods, Pitman Research Notes in Mathematics Series, vol. 395 (1998), Longman: Longman Harlow · Zbl 0919.58060
[33] Ruppenthal, J., Compactness of the \(\overline{\partial} \)-Neumann operator on singular complex spaces, J. Funct. Anal., 260, 11, 3363-3403 (2011) · Zbl 1227.32041
[34] Ruppenthal, J., \(L^2\)-theory for the \(\overline{\partial} \)-operator on compact complex spaces, Duke Math. J., 163, 15, 2887-2934 (2014) · Zbl 1310.32022
[35] Ruppenthal, J., Parabolicity of the regular locus of complex varieties, Proc. Amer. Math. Soc., 144, 1, 225-233 (2016) · Zbl 1343.31006
[36] Schmüdgen, K., Unbounded Self-adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, vol. 265 (2012), Springer: Springer Dordrecht · Zbl 1257.47001
[37] Wells, R. O., Differential Analysis on Complex Manifolds, Graduate Texts in Mathematics, vol. 65 (2008), Springer: Springer New York, with a new appendix by Oscar Garcia-Prada · Zbl 1131.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.