×

Systematic computer assisted proofs of periodic orbits of Hamiltonian systems. (English) Zbl 1510.37097

Summary: The numerical study of Dynamical Systems leads to obtain invariant objects of the systems such as periodic orbits, invariant tori, attractors and so on, that helps to the global understanding of the problem. In this paper we focus on the rigorous computation of periodic orbits and their distribution on the phase space, which configures the so called skeleton of the system. We use Computer Assisted Proof techniques to make a rigorous proof of the existence and the stability of families of periodic orbits in two-degrees of freedom Hamiltonian systems, which provide rigorous skeletons of periodic orbits. To that goal we show how to prove the existence and stability of a huge set of discrete initial conditions of periodic orbits, and later, how to prove the existence and stability of continuous families of periodic orbits. We illustrate the approach with two paradigmatic problems: the Hénon-Heiles Hamiltonian and the Diamagnetic Kepler problem.

MSC:

37J46 Periodic, homoclinic and heteroclinic orbits of finite-dimensional Hamiltonian systems
37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
68V05 Computer assisted proofs of proofs-by-exhaustion type

Software:

POMULT; RODES
Full Text: DOI

References:

[1] Alefeld, G., Inclusion methods for systems of nonlinear equations-the interval Newton method and modifications, Studies in computational mathematics, vol. 5 (1994), North-Holland: North-Holland Amsterdam, p. 7-26 · Zbl 0822.65029
[2] Arioli, G., Branches of periodic orbits for the planar restricted 3-body problem, Discrete Contin Dyn Syst, 11, 745-755 (2004) · Zbl 1060.37070
[3] Auerbach, D.; Cvitanović, P.; Eckmann, J.; Gunaratne, G.; Procaccia, I., Exploring chaotic motion through periodic orbits, Phys Rev Lett, 58, 2387-2389 (1987)
[4] Baranger, M.; Davies, K. T.R.; Mahoney, J. H., The calculation of periodic trajectories, Ann Phys, 186, 95-110 (1988) · Zbl 0651.58031
[5] Barrio, R.; Blesa, F., Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems, Chaos Solitons Fract, 41, 560-582 (2009) · Zbl 1198.37091
[6] Barrio, R.; Blesa, F.; Serrano, S., Fractal structures in the Hénon-Heiles Hamiltonian, EPL (Europhys Lett), 82 (2008)
[7] Barrio, R.; Blesa, F.; Serrano, S., Bifurcations and safe regions in open Hamiltonians, New J Phys, 11 (2009), p. 053004 [15p]
[8] Barrio, R.; Serrano, S., A three-parametric study of the Lorenz model, Physica D, 229, 43-51 (2007) · Zbl 1120.34322
[9] Barrio, R.; Serrano, S., Bounds for the chaotic region in the Lorenz model, Physica D, 238, 1615-1624 (2009) · Zbl 1178.34048
[10] Brent, R. P., An algorithm with guaranteed convergence for finding a zero of a function, Comput J, 14, 422-425 (1971) · Zbl 0231.65046
[12] Cvitanović, P., Invariant measurement of strange sets in terms of cycles, Phys Rev Lett, 61, 2729-2732 (1988)
[13] Davidchack, R. L.; Lai, Y., Efficient algorithm for detecting unstable periodic orbits in chaotic systems, Phys Rev E, 60, 6172-6175 (1999)
[14] Davies, K. T.R.; Huston, T. E.; Baranger, M., Calculations of periodic trajectories for the Hénon-Heiles Hamiltonian using the monodromy method, Chaos, 2, 215-224 (1992) · Zbl 1055.37577
[15] Deane, J. H.B.; Marsh, L., Unstable periodic orbit detection for ODEs with periodic forcing, Phys Lett A, 359, 555-558 (2006) · Zbl 1236.34060
[18] Farantos, Sc., POMULT: a program for computing periodic orbits in hamiltonian systems based on multiple shooting algorithms, Comput Phys Commun, 108, 240-258 (1998) · Zbl 0946.65129
[19] Galias, Z., Rigorous numerical studies of the existence of periodic orbits for the Hénon map, J UCS, 4, 114-124 (1998) · Zbl 0961.68115
[20] Galias, Z.; Zgliczyński, P., Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon map, Nonlinearity, 14, 909-932 (2001) · Zbl 1067.37052
[21] Hénon, M.; Heiles, C., The applicability of the third integral of motion: some numerical experiments, Astron J, 69, 73-79 (1964)
[22] Klebanoff, A.; Bollt, E., Convergence analysis of Davidchack and Lai’s algorithm for finding periodic orbits, Chaos Solitons Fract, 12, 1305-1322 (2001) · Zbl 1024.37020
[23] Kokubu, H.; Wilczak, D.; Zgliczyński, P., Rigorous verification of cocoon bifurcations in the Michelson system, Nonlinearity, 20, 2147-2174 (2007) · Zbl 1126.37035
[24] Krawczyk, R., Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Comput (Arch Elektron Rechnen), 4, 187-201 (1969) · Zbl 0187.10001
[25] Lara, M.; Peláez, J., On the numerical continuation of periodic orbits - an intrinsic, 3-dimensional, differential, predictor-corrector algorithm, Astron Astrophys, 389, 692-701 (2002) · Zbl 1214.70002
[26] Mao, J. M.; Delos, J. B., Hamiltonian bifurcation theory of closed orbits in the diamagnetic kepler problem, Phys Rev A, 45, 1746-1761 (1992)
[27] Meyer, K. R., Generic bifurcation of periodic points, Trans Am Math Soc, 149, 95-107 (1970) · Zbl 0198.42902
[28] Meyer, K. R.; Hall, G. R.; Offin, D., Introduction to Hamiltonian dynamical systems and the N-body problem, Applied mathematical sciences, vol. 90 (2009), Springer: Springer New York · Zbl 1179.70002
[29] Moore, R. E.; Kearfott, R. B.; Cloud, M. J., Introduction to interval analysis (2009), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1168.65002
[30] Nedialkov, N. S.; Jackson, K. R.; Corliss, G. F., Validated solutions of initial value problems for ordinary differential equations, Appl Math Comput, 105, 21-68 (1999) · Zbl 0934.65073
[31] Neumeier, A., Interval methods for systems of equations (1990), Cambridge University Press · Zbl 0715.65030
[32] Perko, L., Differential equations and dynamical systems (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0717.34001
[33] Pingel, D.; Schmelcher, P.; Diakonos, F. K.; Biham, O., Theory and applications of the systematic detection of unstable periodic orbits in dynamical systems, Phys Rev E, 62, 2119-2134 (2000)
[34] Powell, M. J.D., Approximation theory and methods (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0453.41001
[35] Ramos, J. I., Determination of periodic orbits of nonlinear oscillators by means of piecewise-linearization methods, Chaos Solitons Fract, 28, 1306-1313 (2006) · Zbl 1106.37011
[36] Rivlin, T. J., An introduction to the approximation of functions (1981), Dover Publications Inc.: Dover Publications Inc. New York, Corrected reprint of the 1969 original, Dover Books on Advanced Mathematics · Zbl 0489.41001
[37] Roose, D.; Lust, K.; Champneys, A.; Spence, A., A Newton-Picard shooting method for computing periodic solutions of large-scale dynamical systems, Chaos Solitons Fract, 5, 1913-1925 (1995) · Zbl 1080.65542
[38] Saiki, Y., Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors, Nonlinear Processes Geophys, 14, 615-620 (2007)
[39] Schmelcher, P.; Diakonos, F. K., Detecting unstable periodic orbits of chaotic dynamical systems, Phys Rev Lett, 78, 4733-4736 (1997)
[40] Schmelcher, P., General approach to the localization of unstable periodic orbits in chaotic dynamical systems, Phys Rev E, 57, 2739-2746 (1998)
[41] Starkov, K. E., Localization of periodic orbits of polynomial vector fields of even degree by linear functions, Chaos Solitons Fract, 25, 621-627 (2005) · Zbl 1092.37016
[42] Starkov, K. E.; Krishchenko, A. P., Localization of periodic orbits of polynomial systems by ellipsoidal estimates, Chaos Solitons Fract, 23, 981-988 (2005) · Zbl 1077.34046
[43] Tadi, M., On computing periodic orbits, J Sound Vib, 283, 495-506 (2005) · Zbl 1237.34086
[44] Tucker, W., The Lorenz attractor exists, CR Acad Sci Paris Sér I Math, 328, 1197-1202 (1999) · Zbl 0935.34050
[45] Tucker, W., A rigorous ODE solver and Smale’s 14th problem, Found Comput Math, 2, 53-117 (2002) · Zbl 1047.37012
[46] Tucker, W., Validated numerics. A short introduction to rigorous computations (2011), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1231.65077
[47] Viswanath, D., The Lindstedt-Poincaré technique as an algorithm for computing periodic orbits, SIAM Rev, 43, 478-495 (2001) · Zbl 0979.65115
[48] Vrahatis, M. N.; Periou, A. E.; Kalantonis, V. S.; Perdios, E. A.; Papadakis, K.; Prosmiti, R., Application of the characteristic bisection method for locating and computing periodic orbits in molecular systems, Comput Phys Commun, 138, 53-68 (2001) · Zbl 0984.65136
[49] Wilczak, D.; Zgliczyński, P., Period doubling in the Rössler system-a computer assisted proof, Found Comput Math, 9, 611-649 (2009) · Zbl 1177.37083
[50] Wulff, C.; Schebesch, A., Numerical continuation of symmetric periodic orbits, SIAM J Appl Dyn Syst, 5, 435-475 (2006) · Zbl 1210.37034
[51] Zgliczyński, P., Rigorous verification of chaos in the Rössler equations, (Scientific computing and validated numerics (Wuppertal, 1995). Scientific computing and validated numerics (Wuppertal, 1995), Mathematical research, vol. 90 (1996), Akademie Verlag: Akademie Verlag Berlin), 287-292 · Zbl 0849.65041
[52] Zheng, W., Predicting orbits of the Lorenz equation from symbolic dynamics, Physica D, 109, 191-198 (1997) · Zbl 0925.58018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.