×

Convergence analysis of Davidchack and Lai’s algorithm for finding periodic orbits. (English) Zbl 1024.37020

For an algorithm finding not necessarily stable periodic points of discrete dynamical systems in Euclidean space – developed by Davidchack and Lai – the authors give a rigorous proof of convergence and prove at least quadratic convergence. The algorithm is a modified Newton method which constitutes an almost implicit Euler method for a related differential equation, and contains sufficient parameters for adjustment to be applied to special cases in a flexible way, e.g. stabilizing the target points. A discussion of examples is included.

MSC:

37D05 Dynamical systems with hyperbolic orbits and sets
37C27 Periodic orbits of vector fields and flows
65P40 Numerical nonlinear stabilities in dynamical systems

Software:

Dynamics
Full Text: DOI

References:

[1] Davidchack, R. L.; Lai, Y.-. C., Efficient algorithm for detecting unstable periodic orbits in chaotic systems, Phys Rev E, 60, 5, 6172-6175 (1999)
[2] Schmelcher, P.; Diakonos, F. K., General approach to the localization of unstable periodic orbits in chaotic dynamical systems, Phys Rev E, 57, 3, 2739-2746 (1998)
[3] Schmelcher, P.; Diakonos, F. K., Detecting unstable periodic orbits of chaotic dynamical systems, Phys Rev Lett, 78, 25, 4733-4736 (1997) · Zbl 0899.58035
[4] Lathrop, D. P.; Kostelich, E. J., Characterization of an experimental strange attractor by periodic orbits, Phys Rev A, 40, 7, 4028-4031 (1989)
[5] Stoer, J.; Bulirsch, R., Introduction to numerical analysis (1980), Springer: Springer New York · Zbl 0423.65002
[6] Nusse HE, Yorke JA. Dynamics: numerical explorations. vol. 101, 2nd ed. Applied mathematical sciences series. New York: Springer, 1997; Nusse HE, Yorke JA. Dynamics: numerical explorations. vol. 101, 2nd ed. Applied mathematical sciences series. New York: Springer, 1997
[7] Meiss, J., Simplectic, variational principles and transport, Rev Mod Phys, 64, 3, 795-848 (1992) · Zbl 1160.37302
[8] Cvitanovic, P., Invariant measurements of strange sets in terms of cycles, Phys Rev Lett, 61, 2729-2732 (1988)
[9] Cvitanovic, P., Periodic orbits as the skeleton of classical and quantum chaos, Physica D, 51, 138-151 (1991) · Zbl 0744.58013
[10] Cvitanovic, P., Dynamical averaging in terms of periodic orbits, Physica D, 83, 109-123 (1995) · Zbl 1194.37051
[11] Poincaré, H., Les mé thodes nouvelles de la méchanique céleste (1892), Guthier-Villars: Guthier-Villars Paris
[12] Devaney RL. An introduction to chaotic dynamical systems. 2nd ed. Redwood City, CA: Addison-Wesley, 1989; Devaney RL. An introduction to chaotic dynamical systems. 2nd ed. Redwood City, CA: Addison-Wesley, 1989 · Zbl 0695.58002
[13] Artuso, R.; Aurell, E.; Cvitanovic, P., Recycling of strangesets: I cycle expansions, Nonlinearity, 3, 325-359 (1990) · Zbl 0702.58064
[14] Bauer, O.; Mainieri, R., The convergence of chaotic integrals, Chaos, Solitons & Fractals, 7, 3, 361-367 (1997) · Zbl 0933.37027
[15] Grebogi, C.; Ott, E.; Yorke, J. A., Unstable periodic orbits and the dimension of multifractal attractors, Phys Rev A, 37, 1711 (1988)
[16] Lai, Y. C.; Nagai, Y.; Grebogi, C., Characterization of the natural measure by unstable periodic orbits in chaotic attractors, Phys Rev Lett, 79, 649 (1997)
[17] Lai, Y.-C., Characterization of the natural measure by unstable periodic orbits in nonhyperbolic chaotic systems, Phys Rev E, 56, 6, 6531-6539 (1997)
[18] Gora, P.; Byers, W.; Boyarsky, A., Measures on periodic orbits for continuous transformations on the interval, Stoch Anal Applic, 9, 3, 263-270 (1991) · Zbl 0744.60006
[19] Badii, R.; Brun, E.; Finardi, M.; Flepp, L.; Holzner, R.; Parisi, J.; Reyl, C.; Simonet, J., Progress in the analysis of experimental chaos through periodic orbits, Rev Mod Phys, 66, 1389 (1994)
[20] Davidchack, R.; Lai, Y.-. C.; Bollt, E.; Dhamala, M., Estimating generating partitions of chaotic systems by unstable periodic orbits, Phys Rev E, 61, 2, 1353-1356 (2000)
[21] Lefranc, M.; Glorieux, P.; Papoff, F.; Molesti, F.; Arimondo, E., Combining topological analysis and symbolic dynamics to describe a strange attractor and its crises, Phys Rev Lett, 73, 1364-1367 (1994)
[22] Boulant, G.; Bielawski, S.; Derozier, D.; Lefranc, M., Experimental observation of a chaotic attractor with a reverse horseshoe topological structure, Phys Rev E, 55, 4, 3801-3804 (1997)
[23] Boulant, G.; Lefranc, M.; Bielawski, S.; Derozier, D., Horseshoe templates with global torsion in a driver laser, Phys Rev E, 55, 4, 5082-5091 (1997)
[24] Plumecoq J, Lefranc M. From template analysis to generating partitions I: Periodic orbits, knots and symbolicencodings, preprint, 1999; Plumecoq J, Lefranc M. From template analysis to generating partitions I: Periodic orbits, knots and symbolicencodings, preprint, 1999 · Zbl 0978.37006
[25] Plumecoq J, Lefranc M. From template analysis to generating partitions II: Characterizations of the symbolic encodings, preprint, 1999; Plumecoq J, Lefranc M. From template analysis to generating partitions II: Characterizations of the symbolic encodings, preprint, 1999 · Zbl 0978.37007
[26] Tufillaro, N. B.; Holzner, R.; Flepp, L.; Brun, E.; Finardi, M.; Badii, R., Template analysis for a chaotic NMR laser, Phys Rev E, 44, 4786 (1991)
[27] Auerback, D.; Cvitanovic, P.; Eckmann, J.-P.; Guaratne, G.; Procaccia, I., Exploring chaotic motion through periodic orbits, Phys Rev Lett, 58, 23, 2387-2388 (1987)
[28] Biham, O.; Wenzel, W., Characterization of unstable periodic orbits in chaotic attractors and repellers, Phys Rev Lett, 63, 819 (1989) · Zbl 0938.37505
[29] Biham, O.; Wenzel, W., Unstable periodic orbits andthe symbolic dynamics of the complex Hénon map, Phys Rev A, 42, 9, 4639 (1990)
[30] Bowen R. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. In: Lecture Notes in Mathematics, vol. 470. New York: Springer, 1975; Bowen R. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. In: Lecture Notes in Mathematics, vol. 470. New York: Springer, 1975 · Zbl 0308.28010
[31] Bowen R. Topological entropy and Axiom A. Proc Symp Pure Math, A.M.S., Providence R.I. 1970;14:23-41; Bowen R. Topological entropy and Axiom A. Proc Symp Pure Math, A.M.S., Providence R.I. 1970;14:23-41
[32] Bowen, R., Periodic points and measures for Axiom A diffeomorphisms, Trans Amer Math Soc, 154, 377-397 (1971) · Zbl 0212.29103
[33] Bowen, R., Some systems with unique equilibrium state, Math Systems Theory, 8, 193-203 (1975) · Zbl 0299.54031
[34] Bowen, R., Periodic orbits for hyperbolic flows, Amer J Math, 94, 1-30 (1972) · Zbl 0254.58005
[35] Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst Hautes Études Sci Publ Math, 51, 137-173 (1980) · Zbl 0445.58015
[36] de la Llave, R., Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Comm Math Phys, 150, 2, 289-320 (1992) · Zbl 0770.58029
[37] de Carvalho, A., Pruning fronts and the formation of horseshoes, Ergodic Theory Dynam Syst, 19, 4, 851-894 (1999) · Zbl 0948.37027
[38] Smale, S., Differentiable dynamical systems, Bull AMS, 73, 747-817 (1967) · Zbl 0202.55202
[39] Smale, S., On the efficiency of algorithms of analysis, Bull Amer Math Soc (NS), 13, 2, 87-121 (1985) · Zbl 0592.65032
[40] Smale, S., The fundamental theorem of algebra and complexity theory, Bull Amer Math Soc (NS), 4, 1, 1-36 (1981) · Zbl 0456.12012
[41] Ruelle, D., A measure associate with Axiom A attractors, Am J Math, 98, 619-654 (1976) · Zbl 0355.58010
[42] Milnor J, Thurston W. On iterated maps of the interval (I and II), Princeton: Princeton University Press, 1977; Milnor J, Thurston W. On iterated maps of the interval (I and II), Princeton: Princeton University Press, 1977 · Zbl 0664.58015
[43] Strang, G., A chaotic search for i, Coll. Math. J., 221, 3-12 (1991)
[44] Kaloshin V. Generic diffeomorphisms with superexponential growth of number of periodic orbits, Stony Brook IMS Preprint, #1999/2; Kaloshin V. Generic diffeomorphisms with superexponential growth of number of periodic orbits, Stony Brook IMS Preprint, #1999/2 · Zbl 0956.37017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.