×

Galaxy clusters and a possible variation of the fine structure constant. (English) Zbl 1541.83131

Summary: Galaxy clusters have been used as a cosmic laboratory to verify a possible time variation of fundamental constants. Particularly, it has been shown that the ratio \(Y_{SZ}D_A^2/C_{XZS}Y_X\), which is expected to be constant with redshift, can be used to probe a variation of the fine structure constant, \(\alpha\). In this ratio, \(Y_{SZ}D_A^2\) is the integrated comptonization parameter of a galaxy cluster obtained via Sunyaev-Zel’dovich (SZ) effect observations multiplied by its angular diameter distance, \(D_A\), \(Y_X\) is the X-ray counterpart and \(C_{XSZ}\) is an arbitrary constant. Using a combination of SZ and X-ray data, a recent analysis found \(Y_{SZ}D_A^2/C_{XZS}Y_X = C \alpha(z)^{3.5}\), where C is a constant. In this paper, following previous results that suggest that a variation of \(\alpha\) necessarily leads to a violation of the cosmic distance duality relation, \(D_L/D_A(1+z)^2 = 1\), where \(D_L\) is the luminosity distance of a given source, we derive a new expression, \(Y_{SZ}D_A^2/C_{XSZ}Y_X = C \alpha^{3.5} \eta^{-1}(z)\), where \(\eta(z) = D_L/D_A(1+z)^2\). In particular, considering the direct relation \(\eta(z) \propto \alpha(z)^{1/2}\), derived from a class of dilaton runaway models, and 61 measurements of the ratio \(Y_{SZ}D_A^2/C_{XSZ}Y_X\) provided by the Planck collaboration, we discuss bounds on a possible variation of \(\alpha\). We also estimate the value of the constant C, which is compatible with the unity at \(2\sigma\) level, indicating that the assumption of isothermality for the temperature profile of the galaxy clusters used in the analysis holds.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology

References:

[1] P.A.M. Dirac, 1937 The cosmological constants, doi:10.1038/139323a0Nature139 323 · Zbl 0016.18504 · doi:10.1038/139323a0
[2] J.-P. Uzan, 2003 The fundamental constants and their variation: observational status and theoretical motivations, doi:10.1103/RevModPhys.75.403Rev. Mod. Phys.75 403 [hep-ph/0205340] · Zbl 1205.81142 · doi:10.1103/RevModPhys.75.403
[3] J.-P. Uzan, 2011 Varying constants, gravitation and cosmology, doi:10.12942/lrr-2011-2Living Rev. Rel.14 2 [1009.5514] · Zbl 1215.83012 · doi:10.12942/lrr-2011-2
[4] C.J.A.P. Martins, 2017 The status of varying constants: a review of the physics, searches and implications, doi:10.1088/1361-6633/aa860eRep. Prog. Phys.80 126902 [1709.02923] · doi:10.1088/1361-6633/aa860e
[5] J. Muller and L. Biskupek, 2007 Variations of the gravitational constant from lunar laser ranging data, doi:10.1088/0264-9381/24/17/017Class. Quant. Grav.24 4533 · Zbl 1128.85301 · doi:10.1088/0264-9381/24/17/017
[6] E. Garcia-Berro, Yu. A. Kubyshin and P. Loren-Aguilar, 2006 Variation of the gravitational constant inferred from the SNe data, doi:10.1142/S0218271806008772Int. J. Mod. Phys. D 15 1163 [gr-qc/0512164] · Zbl 1119.85312 · doi:10.1142/S0218271806008772
[7] J. Ooba, K. Ichiki, T. Chiba and N. Sugiyama, 2017 Cosmological constraints on scalar-tensor gravity and the variation of the gravitational constant, doi:10.1093/ptep/ptx046PTEP2017 043E03 [1702.00742] · doi:10.1093/ptep/ptx046
[8] M.E. Mosquera and O. Civitarese, 2013 New cosmological constraints on the variation of fundamental constants: the fine structure constant and the Higgs vacuum expectation value, doi:10.1051/0004-6361/201220615Astron. Astrophys.551 A122 · doi:10.1051/0004-6361/201220615
[9] T. Damour, F. Piazza and G. Veneziano, 2002 Violations of the equivalence principle in a dilaton runaway scenario, doi:10.1103/PhysRevD.66.046007Phys. Rev. D 66 046007 [hep-th/0205111] · doi:10.1103/PhysRevD.66.046007
[10] T. Damour, F. Piazza and G. Veneziano, 2002 Runaway dilaton and equivalence principle violations, doi:10.1103/PhysRevLett.89.081601Phys. Rev. Lett.89 081601 [gr-qc/0204094] · doi:10.1103/PhysRevLett.89.081601
[11] M.T. Murphy, J.K. Webb, V.V. Flambaum and S.J. Curran, 2003 Does the fine structure constant vary? A detailed investigation into systematic effects, doi:10.1023/A:1022570532369Astrophys. Space Sci.283 577 [astro-ph/0210532] · doi:10.1023/A:1022570532369
[12] J.A. King et al., 2012 Spatial variation in the fine-structure constant — new results from VLT/UVES, doi:10.1111/j.1365-2966.2012.20852.xMon. Not. Roy. Astron. Soc.422 3370 [1202.4758] · doi:10.1111/j.1365-2966.2012.20852.x
[13] J.B. Whitmore and M.T. Murphy, 2015 Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra, doi:10.1093/mnras/stu2420Mon. Not. Roy. Astron. Soc.447 446 [1409.4467] · doi:10.1093/mnras/stu2420
[14] J. O’Bryan, J. Smidt, F. De Bernardis and A. Cooray, 2015 Constraints on spatial variations in the fine-structure constant from Planck, doi:10.1088/0004-637X/798/1/18Astrophys. J.798 18 [1306.1232] · doi:10.1088/0004-637X/798/1/18
[15] Planck collaboration, 2015 Planck intermediate results — XXIV. Constraints on variations in fundamental constants, doi:10.1051/0004-6361/201424496Astron. Astrophys.580 A22 [1406.7482] · doi:10.1051/0004-6361/201424496
[16] L. Hart and J. Chluba, 2018 New constraints on time-dependent variations of fundamental constants using Planck data, doi:10.1093/mnras/stx2783Mon. Not. Roy. Astron. Soc.474 1850 [1705.03925] · doi:10.1093/mnras/stx2783
[17] A.G. Riess et al., 2018 Milky way Cepheid standards for measuring cosmic distances and application to Gaia DR2: implications for the Hubble constant, doi:10.3847/1538-4357/aac82eAstrophys. J.861 126 [1804.10655] · doi:10.3847/1538-4357/aac82e
[18] T. Damour and F. Dyson, 1996 The Oklo bound on the time variation of the fine structure constant revisited, doi:10.1016/S0550-3213(96)00467-1Nucl. Phys. B 480 37 [hep-ph/9606486] · doi:10.1016/S0550-3213(96)00467-1
[19] Yu. V. Petrov, A.I. Nazarov, M.S. Onegin, V. Yu. Petrov and E.G. Sakhnovsky, 2006 Natural nuclear reactor Oklo and variation of fundamental constants. Part 1. Computation of neutronic of fresh core, doi:10.1103/PhysRevC.74.064610Phys. Rev. C 74 064610 [hep-ph/0506186] · doi:10.1103/PhysRevC.74.064610
[20] C.R. Gould, E.I. Sharapov and S.K. Lamoreaux, 2006 Time variability of α from realistic models of Oklo reactors, doi:10.1103/PhysRevC.74.024607Phys. Rev. C 74 024607 [nucl-ex/0701019] · doi:10.1103/PhysRevC.74.024607
[21] M.S. Onegin, 2012 Investigation of the fundamental constants stability based on the reactor Oklo burn-up analysis, doi:10.1142/S021773231250232XMod. Phys. Lett. A 27 1250232 [1010.6299] · doi:10.1142/S021773231250232X
[22] A. Hees, O. Minazzoli and J. Larena, 2014 Breaking of the equivalence principle in the electromagnetic sector and its cosmological signatures, doi:10.1103/PhysRevD.90.124064Phys. Rev. D 90 124064 [1406.6187] · doi:10.1103/PhysRevD.90.124064
[23] O. Minazzoli and A. Hees, 2014 Late-time cosmology of a scalar-tensor theory with a universal multiplicative coupling between the scalar field and the matter Lagrangian, doi:10.1103/PhysRevD.90.023017Phys. Rev. D 90 023017 [1404.4266] · doi:10.1103/PhysRevD.90.023017
[24] A. Hees, O. Minazzoli and J. Larena, 2014 Breaking of the equivalence principle in the electromagnetic sector and its cosmological signatures, doi:10.1103/PhysRevD.90.124064Phys. Rev. D 90 124064 [1406.6187] · doi:10.1103/PhysRevD.90.124064
[25] T. Damour and A.M. Polyakov, 1994 The string dilaton and a least coupling principle, doi:10.1016/0550-3213(94)90143-0Nucl. Phys. B 423 532 [hep-th/9401069] · Zbl 0990.81645 · doi:10.1016/0550-3213(94)90143-0
[26] T. Damour and A.M. Polyakov, 1994 String theory and gravity, doi:10.1007/BF02106709Gen. Rel. Grav.26 1171 [gr-qc/9411069] · doi:10.1007/BF02106709
[27] J.M. Overduin and P.S. Wesson, 1997 Kaluza-Klein gravity, doi:10.1016/S0370-1573(96)00046-4Phys. Rept.283 303 [gr-qc/9805018] · doi:10.1016/S0370-1573(96)00046-4
[28] J.D. Bekenstein, 1982 Fine structure constant: is it really a constant?, doi:10.1103/PhysRevD.25.1527Phys. Rev. D 25 1527 · doi:10.1103/PhysRevD.25.1527
[29] H.B. Sandvik, J.D. Barrow and J. Magueijo, 2002 A simple cosmology with a varying fine structure constant, doi:10.1103/PhysRevLett.88.031302Phys. Rev. Lett.88 031302 [astro-ph/0107512] · doi:10.1103/PhysRevLett.88.031302
[30] J.D. Barrow and S.Z.W. Lip, 2012 A generalized theory of varying alpha, doi:10.1103/PhysRevD.85.023514Phys. Rev. D 85 023514 [1110.3120] · doi:10.1103/PhysRevD.85.023514
[31] J.D. Barrow and A.A.H. Graham, 2013 General dynamics of varying-alpha universes, doi:10.1103/PhysRevD.88.103513Phys. Rev. D 88 103513 [1307.6816] · doi:10.1103/PhysRevD.88.103513
[32] M. Dine, W. Fischler and M. Srednicki, 1981 A simple solution to the strong CP problem with a harmless axion, doi:10.1016/0370-2693(81)90590-6Phys. Lett. B 104 199 · doi:10.1016/0370-2693(81)90590-6
[33] SINDRUM collaboration, 1985 Search for the decay μ^+ → e^+ e^+ e^-, doi:10.1016/0550-3213(85)90308-6Nucl. Phys. B 260 1 · doi:10.1016/0550-3213(85)90308-6
[34] P. Brax, C. van de Bruck, A.-C. Davis, J. Khoury and A. Weltman, 2004 Detecting dark energy in orbit — the cosmological chameleon, doi:10.1103/PhysRevD.70.123518Phys. Rev. D 70 123518 [astro-ph/0408415] · doi:10.1103/PhysRevD.70.123518
[35] P. Brax, C. van de Bruck and A.-C. Davis, 2007 Compatibility of the chameleon-field model with fifth-force experiments, cosmology and PVLAS and CAST results, doi:10.1103/PhysRevLett.99.121103Phys. Rev. Lett.99 121103 [hep-ph/0703243] · doi:10.1103/PhysRevLett.99.121103
[36] M. Ahlers, A. Lindner, A. Ringwald, L. Schrempp and C. Weniger, 2008 Alpenglow — a signature for chameleons in axion-like particle search experiments, doi:10.1103/PhysRevD.77.015018Phys. Rev. D 77 015018 [0710.1555] · doi:10.1103/PhysRevD.77.015018
[37] J. Khoury and A. Weltman, 2004 Chameleon cosmology, doi:10.1103/PhysRevD.69.044026Phys. Rev. D 69 044026 [astro-ph/0309411] · doi:10.1103/PhysRevD.69.044026
[38] T. Harko, F.S.N. Lobo and O. Minazzoli, 2013 Extended f(R,L_m) gravity with generalized scalar field and kinetic term dependences, doi:10.1103/PhysRevD.87.047501Phys. Rev. D 87 047501 [1210.4218] · doi:10.1103/PhysRevD.87.047501
[39] R.F.L. Holanda and K.N.N.O. Barros, 2016 Searching for cosmological signatures of the Einstein equivalence principle breaking, doi:10.1103/PhysRevD.94.023524Phys. Rev. D 94 023524 [1606.07923] · doi:10.1103/PhysRevD.94.023524
[40] R.F.L. Holanda and S.H. Pereira, 2016 Can galaxy clusters, type-Ia supernovae and cosmic microwave background rule out a class of modified gravity theories?, doi:10.1103/PhysRevD.94.104037Phys. Rev. D 94 104037 [1610.01512] · doi:10.1103/PhysRevD.94.104037
[41] R.F.L. Holanda, S.H. Pereira and S. Santos da Costa, 2017 Searching for deviations from the general relativity theory with gas mass fraction of galaxy clusters and complementary probes, doi:10.1103/PhysRevD.95.084006Phys. Rev. D 95 084006 [1612.09365] · doi:10.1103/PhysRevD.95.084006
[42] R.F.L. Holanda, S.H. Pereira, V.C. Busti and C.H.G. Bessa, 2017 Improved constraints on violations of the Einstein equivalence principle in the electromagnetic sector with complementary cosmic probes, doi:10.1088/1361-6382/aa8828Class. Quant. Grav.34 195003 [1705.05439] · Zbl 1373.83128 · doi:10.1088/1361-6382/aa8828
[43] C.J.A.P. Martins and A.M.M. Pinho, 2015 Fine-structure constant constraints on dark energy, doi:10.1103/PhysRevD.91.103501Phys. Rev. D 91 103501 [1505.02196] · doi:10.1103/PhysRevD.91.103501
[44] C.J.A.P. Martins, A.M.M. Pinho, P. Carreira, A. Gusart, J. López and C.I.S.A. Rocha, 2016 Fine-structure constant constraints on dark energy: II. Extending the parameter space, doi:10.1103/PhysRevD.93.023506Phys. Rev. D 93 023506 [1601.02950] · doi:10.1103/PhysRevD.93.023506
[45] M.E. Mosquera and O. Civitarese, 2017 Time variation of fundamental constants in nonstandard cosmological models, doi:10.1103/PhysRevC.96.045802Phys. Rev. C 96 045802 · doi:10.1103/PhysRevC.96.045802
[46] R.F.L. Holanda, S.J. Landau, J.S. Alcaniz, I.E. Sanchez G. and V.C. Busti, 2016 Constraints on a possible variation of the fine structure constant from galaxy cluster data J. Cosmol. Astropart. Phys.2016 05 047 [1510.07240]
[47] R.F.L. Holanda, V.C. Busti, L.R. Colaço, J.S. Alcaniz and S.J. Landau, 2016 Galaxy clusters, type-Ia supernovae and the fine structure constant J. Cosmol. Astropart. Phys.2016 08 055 [1605.02578]
[48] R.F.L. Holanda, L.R. Colaço, R.S. Gonçalves and J.S. Alcaniz, 2017 Limits on evolution of the fine-structure constant in runaway dilaton models from Sunyaev-Zeldovich observations, doi:10.1016/j.physletb.2017.01.055Phys. Lett. B 767 188 [1701.07250] · doi:10.1016/j.physletb.2017.01.055
[49] I. De Martino, C.J. A.P. Martins, H. Ebeling and D. Kocevski, 2016 New constraints on spatial variations of the fine structure constant from clusters of galaxies, doi:10.3390/universe2040034Universe2 34 [1612.06739] · doi:10.3390/universe2040034
[50] T.L. Smith, D. Grin, D. Robinson and D. Qi, 2019 Probing spatial variation of the fine-structure constant using the CMB, doi:10.1103/PhysRevD.99.043531Phys. Rev. D 99 043531 [1808.07486] · doi:10.1103/PhysRevD.99.043531
[51] S. Galli, 2013 Clusters of galaxies and variation of the fine structure constant, doi:10.1103/PhysRevD.87.123516Phys. Rev. D 87 123516 [1212.1075] · doi:10.1103/PhysRevD.87.123516
[52] Planck collaboration, 2011 Planck early results XI: calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations, doi:10.1051/0004-6361/201116458Astron. Astrophys.536 A11 [1101.2026] · doi:10.1051/0004-6361/201116458
[53] A.G. Riess et al., 2018 Milky way Cepheid standards for measuring cosmic distances and application to Gaia DR2: implications for the Hubble constant, doi:10.3847/1538-4357/aac82eAstrophys. J.861 126 [1804.10655] · doi:10.3847/1538-4357/aac82e
[54] N. Kaiser, 1986 Evolution and clustering of rich clusters, doi:10.1093/mnras/222.2.323Mon. Not. Roy. Astron. Soc.222 323 · doi:10.1093/mnras/222.2.323
[55] R.A. Sunyaev and Y.B. Zeldovich, 1972 The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies Comments Astrophys. Space Phys.4 173
[56] M. Birkinshaw, 1999 The Sunyaev-Zel’dovich effect, doi:10.1016/S0370-1573(98)00080-5Phys. Rept.310 97 [astro-ph/9808050] · Zbl 1040.83502 · doi:10.1016/S0370-1573(98)00080-5
[57] J.E. Carlstrom, G.P. Holder and E.D. Reese, 2002 Cosmology with the Sunyaev-Zel’dovich effect, doi:10.1146/annurev.astro.40.060401.093803Ann. Rev. Astron. Astrophys.40 643 [astro-ph/0208192] · doi:10.1146/annurev.astro.40.060401.093803
[58] N. Itoh, Y. Kohyama and S. Nozawa, 1998 Relativistic corrections to the Sunyaev-Zel’dovich effect for clusters of galaxies, doi:10.1086/305876Astrophys. J.502 7 [astro-ph/9712289] · doi:10.1086/305876
[59] S. Sasaki, 1996 A new method to estimate cosmological parameters using baryon fraction of clusters of galaxies, doi:10.1093/pasj/48.6.L119Publ. Astron. Soc. Jpn.48 L119 [astro-ph/9611033] · doi:10.1093/pasj/48.6.L119
[60] R.S. Goncalves, R.F.L. Holanda and J.S. Alcaniz, 2012 Testing the cosmic distance duality with X-ray gas mass fraction and supernovae data, doi:10.1111/j.1745-3933.2011.01192.xMon. Not. Roy. Astron. Soc.420 L43 [1109.2790] · doi:10.1111/j.1745-3933.2011.01192.x
[61] C. Brans and R.H. Dicke, 1961 Mach’s principle and a relativistic theory of gravitation, doi:10.1103/PhysRev.124.925Phys. Rev.124 925 · Zbl 0103.21402 · doi:10.1103/PhysRev.124.925
[62] T. Damour and K. Nordtvedt, 1993 Tensor-scalar cosmological models and their relaxation toward general relativity, doi:10.1103/PhysRevD.48.3436Phys. Rev. D 48 3436 · doi:10.1103/PhysRevD.48.3436
[63] T. Damour and A.M. Polyakov, 1994 String theory and gravity, doi:10.1007/BF02106709Gen. Rel. Grav.261171 [gr-qc/9411069] · doi:10.1007/BF02106709
[64] Y. Fujii and K.I. Maeda, 2004 The scalar-tensor theory of gravitation, https://doi.org/10.1017/CBO9780511535093Cambridge University Press, Cambridge, U.K. [ISBN:0-521-81159-7]
[65] L. Jarv, P. Kuusk and M. Saal, 2012 Scalar-tensor cosmologies with dust matter in the general relativity limit, doi:10.1103/PhysRevD.85.064013Phys. Rev. D 85 064013 [1112.5308] · doi:10.1103/PhysRevD.85.064013
[66] A.V. Kravtsov, A. Vikhlinin and D. Nagai, 2006 A new robust low-scatter X-ray mass indicator for clusters of galaxies, doi:10.1086/506319Astrophys. J.650 128 [astro-ph/0603205] · doi:10.1086/506319
[67] R. Stanek, E. Rasia, A.E. Evrard, F. Pearce and L. Gazzola, 2010 Massive halos in millennium gas simulations: multivariate scaling relations, doi:10.1088/0004-637X/715/2/1508Astrophys. J.715 1508 [0910.1599] · doi:10.1088/0004-637X/715/2/1508
[68] D. Fabjan et al., 2011 X-ray mass proxies from hydrodynamic simulations of galaxy clusters (paper I), doi:10.1111/j.1365-2966.2011.18497.xMon. Not. Roy. Astron. Soc.416 801 [1102.2903] · doi:10.1111/j.1365-2966.2011.18497.x
[69] S.T. Kay et al., 2012 Sunyaev-Zel’dovich clusters in millennium gas simulations, doi:10.1111/j.1365-2966.2012.20623.xMon. Not. Roy. Astron. Soc.422 1999 [1112.3769] · doi:10.1111/j.1365-2966.2012.20623.x
[70] H. Boehringer, K. Dolag and G. Chon, 2012 On the self-similar appearance of galaxy clusters in X-rays, doi:10.1051/0004-6361/201118000Astron. Astrophys.539 A120 [1112.5035] · doi:10.1051/0004-6361/201118000
[71] D. Nagai, A. Vikhlinin and A.V. Kravtsov, 2007 Testing X-ray measurements of galaxy clusters with cosmological simulations, doi:10.1086/509868Astrophys. J.655 98 [astro-ph/0609247] · doi:10.1086/509868
[72] C.J. A.P. Martins, P.E. Vielzeuf, M. Martinelli, E. Calabrese and S. Pandolfi, 2015 Evolution of the fine-structure constant in runaway dilaton models, doi:10.1016/j.physletb.2015.03.002Phys. Lett. B 743 377 [1503.05068] · doi:10.1016/j.physletb.2015.03.002
[73] R. Piffaretti, M. Arnaud, G.W. Pratt, E. Pointecouteau and J.-B. Melin, 2011 The MCXC: a meta-catalogue of X-ray detected clusters of galaxies, doi:10.1051/0004-6361/201015377Astron. Astrophys.534 A109 [1007.1916] · doi:10.1051/0004-6361/201015377
[74] M. Arnaud, G.W. Pratt, R. Piffaretti, H. Boehringer, J.H. Croston and E. Pointecouteau, 2010 The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y_SZ-M_500 relation, doi:10.1051/0004-6361/200913416Astron. Astrophys.517 A92 [0910.1234] · doi:10.1051/0004-6361/200913416
[75] E.S. Battistelli et al., 2002 Cosmic microwave background temperature at galaxy clusters, doi:10.1086/345589Astrophys. J.580 L101 [astro-ph/0208027] · doi:10.1086/345589
[76] G. Luzzi et al., 2009 Redshift dependence of the CMB temperature from SZ measurements, doi:10.1088/0004-637X/705/2/1122Astrophys. J.705 1122 [0909.2815] · doi:10.1088/0004-637X/705/2/1122
[77] A. Avgoustidis, G. Luzzi, C.J. A.P. Martins and A.M. R. V.L. Monteiro, 2012 Constraints on the CMB temperature redshift dependence from SZ and distance measurements J. Cosmol. Astropart. Phys.2012 02 013 [1112.1862]
[78] J.A.S. Lima, A.I. Silva and S.M. Viegas, 2000 Is the radiation temperature redshift relation of the standard cosmology in accordance with the data?, doi:10.1046/j.1365-8711.2000.03172.xMon. Not. Roy. Astron. Soc.312 747 · doi:10.1046/j.1365-8711.2000.03172.x
[79] C. Horellou, M. Nord, D. Johansson and A. Levy, 2005 Probing the cosmic microwave background temperature using the Sunyaev-Zeldovich effect, doi:10.1051/0004-6361:20053090Astron. Astrophys.441 435 [astro-ph/0507032] · doi:10.1051/0004-6361:20053090
[80] P. Noterdaeme, P. Petitjean, R. Srianand, C. Ledoux and S. Lopez, 2011 The evolution of the cosmic microwave background temperature: measurements of TCMB at high redshift from carbon monoxide excitation, doi:10.1051/0004-6361/201016140Astron. Astrophys.526 L7 [1012.3164] · doi:10.1051/0004-6361/201016140
[81] Planck collaboration, 2016 Planck 2015 results. XIII. Cosmological parameters, doi:10.1051/0004-6361/201525830Astron. Astrophys.594 A13 [1502.01589] · doi:10.1051/0004-6361/201525830
[82] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, [1807.06209]
[83] eROSITA webpage, http://www.mpe.mpg.de/eROSITA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.