×

Extension of localisation operators to ultradistributional symbols with super-exponential growth. (English) Zbl 1514.46031

Summary: In the Gelfand-Shilov setting, the localisation operator \(A^{\varphi_1, \varphi_2}_a\) is equal to the Weyl operator whose symbol is the convolution of \(a\) with the Wigner transform of the windows \(\varphi_2\) and \(\varphi_1\). We employ this fact to extend the definition of localisation operators to symbols \(a\) having very fast super-exponential growth by allowing them to be mappings from \(\mathcal{D}^{\{M_p\}}(\mathbb{R}^d)\) into \(\mathcal{D}^{\prime\{M_p\}}(\mathbb{R}^d)\), where \(M_p\), \(p\in \mathbb N\), is a non-quasi-analytic Gevrey type sequence. By choosing the windows \(\varphi_1\) and \(\varphi_2\) appropriately, our main results show that one can consider symbols with growth in position space of the form \(\exp(\exp(l|\cdot|^q))\), \(l,q>0\).

MSC:

46F12 Integral transforms in distribution spaces
47G30 Pseudodifferential operators
46F05 Topological linear spaces of test functions, distributions and ultradistributions
35S05 Pseudodifferential operators as generalizations of partial differential operators
Full Text: DOI

References:

[1] Berezin, FA, Wick and anti-Wick symbols of operators, Mat. Sb., 86, 128, 578-610 (1971)
[2] Carmichael, R., Kamiński, A., Pilipović, S.: Boundary Values and Convolution in Ultradistribution Spaces. World Scientific Publishing Co Pte Ltd (2007) · Zbl 1155.46002
[3] Constantine, GM; Savits, TH, A multivariate Faá di Bruno formula with applications, Trans. Am. Math. Soc., 348, 503-520 (1996) · Zbl 0846.05003 · doi:10.1090/S0002-9947-96-01501-2
[4] Cordero, E.; Gröchenig, K., Time-frequency analysis of localization operators, J. Funct. Anal., 205, 1, 107-131 (2003) · Zbl 1047.47038 · doi:10.1016/S0022-1236(03)00166-6
[5] Daubechies, I., Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inform. Theory, 34, 4, 605-612 (1988) · Zbl 0672.42007 · doi:10.1109/18.9761
[6] Debrouwere, A.; Neyt, L.; Vindas, J., The nuclearity of Gelfand-Shilov spaces and kernel theorems, Collect. Math., 72, 1, 203-227 (2021) · Zbl 1465.46003 · doi:10.1007/s13348-020-00286-2
[7] Debrouwere, A.; Vindas, J., On weighted inductive limits of spaces of ultradifferentiable functions and their duals, Math. Nachr., 292, 3, 573-602 (2019) · Zbl 1448.46010 · doi:10.1002/mana.201700395
[8] Debrouwere, A.; Vindas, J., Topological properties of convolutor spaces via the short-time Fourier transform, Trans. Am. Math. Soc., 374, 2, 829-861 (2021) · Zbl 1468.46004 · doi:10.1090/tran/8080
[9] Dimovski, P.; Pilipović, S.; Prangoski, B.; Vindas, J., Convolution of ultradistributions and ultradistribution spaces associated to translation-invariant Banach spaces, Kyoto J. Math., 56, 401-440 (2016) · Zbl 1352.46039 · doi:10.1215/21562261-3478916
[10] Engliš, M., Toeplitz operators and localization operators, Trans. Am. Math. Soc., 361, 2, 1039-1052 (2009) · Zbl 1165.47019 · doi:10.1090/S0002-9947-08-04547-9
[11] Fernández, C., Galbis, A., Toft, J.: The Bargmann transform and powers of harmonic oscillator on Gelfand-Shilov subspaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111(1) (2017), 1-13 · Zbl 1368.46035
[12] Gröchenig, K., Foundations of time-frequency analysis (2001), Boston: Birkhäuser Boston Inc., Boston · Zbl 0966.42020 · doi:10.1007/978-1-4612-0003-1
[13] Komatsu, H., Ultradistributions, I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 20, 1, 25-105 (1973) · Zbl 0258.46039
[14] Komatsu, H., Ultradistributions, II: The kernel theorem and ultradistributions with support in a submanifold, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24, 3, 607-628 (1977) · Zbl 0385.46027
[15] Komatsu, H., Ultradistributions, III: Vector valued ultradistributions and the theory of kernels, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29, 3, 653-717 (1982) · Zbl 0507.46035
[16] Luef, F.; Skrettingland, E., Convolutions for localization operators, J. Math. Pures Appl., 118, 288-316 (2018) · Zbl 1486.47086 · doi:10.1016/j.matpur.2017.12.004
[17] Nicola, F., Rodino, L.: Global Psedo-Differential Calculus on Euclidean Spaces, vol. 4. Birkhäuser Basel (2010) · Zbl 1257.47002
[18] Petzsche, H-J, On E. Borel’s theorem, Math. Ann., 282, 299-313 (1988) · Zbl 0633.46033 · doi:10.1007/BF01456977
[19] Pilipović, S.; Prangoski, B., Anti-Wick and Weyl quantization on ultradistribution spaces, J. Math. Pures Appl., 103, 2, 472-503 (2015) · Zbl 1307.47052 · doi:10.1016/j.matpur.2014.04.011
[20] Pilipović, S.; Prangoski, B., Complex powers for a class of infinite order hypoelliptic operators, Dissert. Math., 529, 1-58 (2018) · Zbl 1397.35351 · doi:10.4064/dm770-11-2017
[21] Pilipović, S.; Prangoski, B.; Vindas, J., On quasianalytic classes of Gelfand-Shilov type. Parametrix and convolution, J. Math. Pures Appl., 116, 174-210 (2018) · Zbl 1415.46028 · doi:10.1016/j.matpur.2017.10.008
[22] Pilipović, S.; Prangoski, B.; Vindas, J., Infinite order \(\Psi\) DOs: composition with entire functions, new Shubin-Sobolev spaces, and index theorem, Anal. Math. Phys., 11, 3, 48p (2021) · Zbl 1472.35469 · doi:10.1007/s13324-021-00545-w
[23] Pilipović, S., Prangoski, B., Vučković, ĐJ.: Convolution with the kernel \(e^{s\langle x\rangle^q}, q\ge 1, s>0\) within ultradistribution spaces, Mediterr. J. Math. 18(4), (2021), Article No. 164, 14p · Zbl 1480.46053
[24] Shubin, M.A.: Pseudodifferential operators and spectral theory, 2nd edn. Springer Verlag (2001) · Zbl 0980.35180
[25] Teofanov, N., Continuity and Schatten-von Neumann properties for localization operators on modulation spaces, Mediterr. J. Math., 13, 2, 745-758 (2016) · Zbl 1342.47064 · doi:10.1007/s00009-014-0509-8
[26] Teofanov, N., Gelfand-Shilov spaces and localization operators, Funct. Anal. Approx. Comput., 7, 2, 135-158 (2015) · Zbl 1387.46005
[27] Toft, J., The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., 3, 145-227 (2012) · Zbl 1257.42033 · doi:10.1007/s11868-011-0044-3
[28] Wong, M.W.: Wavelet Transforms and Localization Operators. Birkhäuser (2002) · Zbl 1016.42017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.