×

An algebraic view of bacterial genome evolution. (English) Zbl 1302.92089

The paper describes the algebraic modelling of rearrangements of bacterial chromosomes at two levels: local (sequence level) and topological level. The author commences with an overview of evolutionary changes observed on bacterial genomes. Next, the underlying biological mechanisms are presented and the current approaches for modelling inversions are introduced. Following a description of the tangle algebra approach for describing topological evolution, the author discusses in detail the inversions and knotting in a common modelling framework, the Birman-Murakami-Wenzl algebra (BMW algebra), using features from braid groups and Coxeter groups. The algebraic connections with Iwahori-Hecke algebras and the Kauffman tangle algebra are also underlined.

MSC:

92D15 Problems related to evolution
20F55 Reflection and Coxeter groups (group-theoretic aspects)
57M25 Knots and links in the \(3\)-sphere (MSC2010)

Software:

SageMath; R; Magma; GAP

References:

[1] Alexandrov AI, Cozzarelli NR, Holmes VF, Khodursky AB, Peter BJ, Postow L, Rybenkov V, Vologodskii AV (1999) Mechanisms of separation of the complementary strands of DNA during replication. Genetica 106(1):131-140 · doi:10.1023/A:1003749416449
[2] Allman ES, Rhodes JA (2007) Molecular phylogenetics from an algebraic viewpoint. Statistica Sinica 17(4):1299-1316 · Zbl 1132.92019
[3] Ancel Meyers L, Ancel FD, Lachmann M (2005) Evolution of genetic potential. PLoS Comput Biol 1(3):0236-0243 · doi:10.1371/journal.pcbi.0010032
[4] Apostolico A, Ciriello G, Guerra C, Heitsch CE, Hsiao C, Williams LD (2009) Finding 3D motifs in ribosomal RNA structures. Nucleic Acids Res 37(4):e29 · doi:10.1093/nar/gkn1044
[5] Arsuaga J, Vázquez M, Trigueros S, Sumners DW, Roca J (2002) Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc Natl Acad Sci USA 99(8):5373-5377 · doi:10.1073/pnas.032095099
[6] Arsuaga J, Vazquez M, McGuirk P, Trigueros S, Sumners DW, Roca J (2005) DNA knots reveal a chiral organization of DNA in phage capsids. Proc Natl Acad Sci USA 102(26):9165-9169 · doi:10.1073/pnas.0409323102
[7] Bader DA, Moret BME, Yan M (2001) A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J Comput Biol 8(5):483-491 · doi:10.1089/106652701753216503
[8] Bader M (2009) Sorting by reversals, block interchanges, tandem duplications, and deletions. BMC Bioinform 10(Suppl 1):S9 · doi:10.1186/1471-2105-10-S1-S9
[9] Bafna V, Pevzner PA (1993) Genome rearrangements and sorting by reversals. In: IEEE proceedings of the 34th annual symposium on the foundations of computer science, pp 148-157 · Zbl 0844.68123
[10] Ballouz S, Francis AR, Lan R, Tanaka MM (2010) Conditions for the evolution of gene clusters in bacterial genomes. PLoS Comput Biol 6(2):e1000672 · doi:10.1371/journal.pcbi.1000672
[11] Bergeron A, Mixtacki J, Stoye J (2005) The inversion distance problem. In: Mathematics of evolution and phylogeny, pp 262-290 · Zbl 1090.92028
[12] Birman J, Wenzl H (1989) Braids, link polynomials and a new algebra. Trans Am Math Soc 313(1):249-273 · Zbl 0684.57004 · doi:10.1090/S0002-9947-1989-0992598-X
[13] Birman JS (1974) Braids, links, and mapping class groups, 82nd edn. Princeton University Press, Princeton
[14] Birman JS (1976) On the stable equivalence of plat representations of knots and links. Can J Math 28(2):264-290 · Zbl 0339.55005 · doi:10.4153/CJM-1976-030-1
[15] Bodner M, Patera J, Peterson M (2012) Affine reflection groups for tiling applications: knot theory and DNA. J Math Phys 53(1):013516 · Zbl 1273.92040 · doi:10.1063/1.3677762
[16] Bölinger D, Sułkowska JI, Hsu HP, Mirny LA, Kardar M et al (2010) A Stevedore’s protein knot. PLoS Comput Biol 6(4):e1000731 · doi:10.1371/journal.pcbi.1000731
[17] Bosma W, Cannon J, Playoust C (1997) The Magma algebra system, I. The user language. J Symbolic Comput 34(3-4):235-265 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[18] Brauer R (1937) On algebras which are connected with the semisimple continuous groups. Ann Math 38(4):857-872 · JFM 63.0873.02 · doi:10.2307/1968843
[19] Buck D (2009) DNA topology. Applications of knot theory, vol 66. In: Proceeding of the symposium on applied mathematics. American Mathematical Society, Providence, RI, pp 47-79 · Zbl 1180.92024
[20] Cabrera-Ibarra H, Lizárraga-Navarro DA (2010) Braid solutions to the action of the Gin enzyme. J Knot Theory Ramif 19(8):1051-1074 · Zbl 1205.57009 · doi:10.1142/S0218216510008327
[21] Caprara A (1997) Sorting by reversals is difficult. In: Proceedings of the first annual international conference on computational molecular biology. ACM, New York, pp 75-83
[22] Caprara A (2003) The reversal median problem. INFORMS J Comput 15(1):93 · Zbl 1238.90099 · doi:10.1287/ijoc.15.1.93.15155
[23] Conway J (1970) An enumeration of knots and links, and some of their algebraic properties. In: Proceeding of the conference on computational problems in abstract algebra, Oxford, pp 329-358 · Zbl 0202.54703
[24] Cozzarelli NR, Krasnow MA, Gerrard SP, White JH (1984) A topological treatment of recombination and topoisomerases. In: Cold Spring Harbor symposium on quantitative biology, vol 49. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 383-400
[25] Craig NL (2002) Mobile DNA II. American Society for Microbiology, USA
[26] Crisona NJ, Weinberg RL, Peter BJ, Sumners DW, Cozzarelli NR (1999) The topological mechanism of phage \[\lambda\] λ integrase. J Mol Biol 289(4):747-775 · doi:10.1006/jmbi.1999.2771
[27] Darcy I, Luecke J, Vazquez M (2009) Tangle analysis of difference topology experiments: applications to a Mu protein-DNA complex. Algebraic Geom Topol 9:2247-2309 · Zbl 1184.57003 · doi:10.2140/agt.2009.9.2247
[28] Darcy IK, Sumners DW (1998) Applications of topology to DNA. In: Knot theory (Warsaw, 1995), vol 42. Banach Center Publications, Polish Academy of Sciences, Warsaw, pp 65-75 · Zbl 0901.57019
[29] Darling ACE, Bob M, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394-1403 · doi:10.1101/gr.2289704
[30] Darling AE, Miklós I, Ragan MA (2008) Dynamics of genome rearrangement in bacterial populations. PLoS Genetics 4(7) :e1000128. doi:10.1371/journal.pgen.1000128
[31] Dean FB, Stasiak A, Koller T, Cozzarelli NR (1985) Duplex DNA knots produced by Escherichia coli topoisomerase I. Structure and requirements for formation. J Biol Chem 260(8):4975-4983
[32] Demerec M (1964) Clustering of functionally related genes in Salmonella typhimurium. Proc Natl Acad Sci USA 51(6):1057-1060 · doi:10.1073/pnas.51.6.1057
[33] Drton M, Sturmfels B, Sullivant S (2009) Lectures on algebraic statistics. Birkhauser, Basel · Zbl 1166.13001 · doi:10.1007/978-3-7643-8905-5
[34] Dyer M (1990) Reflection subgroups of Coxeter systems. J Algebra 135(1):57-73 · Zbl 0712.20026 · doi:10.1016/0021-8693(90)90149-I
[35] Egri-Nagy A, Gebhardt V, Tanaka MM, Francis AR (2013) Group-theoretic models of the inversion process in bacterial genomes. J Math Biol (in press) · Zbl 1293.92015
[36] Eickmeyer K, Huggins P, Pachter L, Yoshida R et al (2008) On the optimality of the neighbor-joining algorithm. Algorithms Mol Biol 3(1):5 · doi:10.1186/1748-7188-3-5
[37] Eisen JA, Heidelberg JF, White O, Salzberg SL (2000) Evidence for symmetric chromosomal inversions around the replication origin in bacterial. Genome Biol 1(6):research0011.1-0011.9. doi:10.1186/gb-2000-1-6-research0011
[38] Emert J, Ernst C (2000) N-string tangles. J Knot Theory Ramif 9(08):987-1004 · Zbl 1001.57009 · doi:10.1142/S021821650000058X
[39] Ernst C (1996) Tangle equations. J Knot Theory Ramif 5:145-160 · Zbl 0857.57005 · doi:10.1142/S0218216596000114
[40] Ernst C (1997) Tangle equations II. J Knot Theory Ramif 6:1-12 · Zbl 0878.57006 · doi:10.1142/S0218216597000029
[41] Ernst C, Sumners DW (1990) A calculus for rational tangles: applications to DNA recombination. Math Proc Camb Philos Soc 108(3):489-515 (ISSN 0305-0041) · Zbl 0727.57005
[42] Ernst C, Sumners DW (1999) Solving tangle equations arising in a DNA recombination model. Math Proc Camb Philos Soc 126(1):23-36 · Zbl 0916.57013 · doi:10.1017/S0305004198002989
[43] Even S, Goldreich O (1981) Minimum-length generator sequence problem is NP-hard. J Algorithms 2(3):311-313 · Zbl 0467.68046 · doi:10.1016/0196-6774(81)90029-8
[44] Fertin G, Labarre A, Rusu I, Tannier É, Vialette S (2009) Combinatorics of genome rearrangements. MIT press, London · Zbl 1170.92022 · doi:10.7551/mitpress/9780262062824.001.0001
[45] Freyd P, Yetter D, Hoste J, Lickorish WBR, Millett K, Ocneanu A (1985) A new polynomial invariant of knots and links. Bull (N Ser) Am Math Soc 12(2):239-246 · Zbl 0572.57002 · doi:10.1090/S0273-0979-1985-15361-3
[46] Frisch HL, Wasserman E (1961) Chemical topology. J Am Chem Soc 83(18):3789-3795 · doi:10.1021/ja01479a015
[47] GAP (2008) GAP—Groups, Algorithms, and Programming, version 4.4.12. The GAP Group (http://www.gap-system.org)
[48] Gascuel O (2005) Mathematics of evolution and phylogeny. Oxford University Press, Oxford · Zbl 1104.92332
[49] Gates WH, Papadimitriou CH (1979) Bounds for sorting by prefix reversal. Discret Math 27(1):47-57 · Zbl 0397.68062 · doi:10.1016/0012-365X(79)90068-2
[50] Goldman JR, Kauffman LH (1997) Rational tangles. Adv Appl Math 18(3):300-332 · Zbl 0871.57002 · doi:10.1006/aama.1996.0511
[51] Grindley NDF (2002) The movement of Tn3-like elements: transposition and cointegrate resolution. Mobile DNA II. ASM Press, Washington
[52] Grindley NDF, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567-605 · doi:10.1146/annurev.biochem.73.011303.073908
[53] Hannenhalli S, Pevzner PA (1999) Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. JACM 46(1):1-27 (preliminary version in proceedings of the 27th annual ACM symposium on the theory of computing, ACM, New York, 1995, pp 178-189) · Zbl 1064.92510
[54] Hardy CD, Crisona NJ, Stone MD, Cozzarelli NR (2004) Disentangling DNA during replication: a tale of two strands. Philos Trans R Soc Lond Ser B Biol Sci 359(1441):39-47 · doi:10.1098/rstb.2003.1363
[55] Hayes B (2007) Sorting out the genome. Am Sci 95(5):386-391 · doi:10.1511/2007.67.3717
[56] Heitsch CE, Condon AE, Hoos HH (2003) From RNA secondary structure to coding theory: a combinatorial approach. In: Lecture notes in computer science, pp 215-228 · Zbl 1026.68546
[57] Howlett RB, Lehrer GI (1999) On reflection length in reflection groups. Archiv der Mathematik 73(5):321-326 · Zbl 0939.20054 · doi:10.1007/s000130050404
[58] Hu G, Wang Z, Qiu WY (2011) Topological analysis of enzymatic actions on DNA polyhedral links. Bull Math Biol 73(12):3030-3046. doi:10.1007/s11538-011-9659-z · Zbl 1251.92015
[59] Humphreys JE (1990) Reflection groups and Coxeter groups. Cambridge University Press, Cambridge (ISBN 0-521-37510-X) · Zbl 0725.20028
[60] Jayaram M, Harshey R (2009) Mathematics of DNA structure, function and interactions. Difference topology: analysis of high-order DNA-protein assemblies. In: The IMA volumes in mathematics and its applications. Springer, New York, pp 139-158 · JFM 63.0873.02
[61] Jones VFR (1985) A polynomial invariant for knots via von Neumann algebras. Bull Am Math Soc (NS) 12(1):103-111. doi:10.1090/S0273-0979-1985-15304-2 (ISSN 0273-0979) · Zbl 0564.57006
[62] Kanaar R, Klippel A, Shekhtman E, Dungan JM, Kahmann R, Cozzarelli NR (1990) Processive recombination by the phage Mu Gin system: implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer actions. Cell 62(2):353-366 · doi:10.1016/0092-8674(90)90372-L
[63] Kassel C, Turaev VVG (2008) Braid groups. Springer, New York · Zbl 1208.20041 · doi:10.1007/978-0-387-68548-9
[64] Kauffman LH, Lambropoulou S (2009) Lecture notes in mathematics. Tangles, rational knots, and DNA, 1973rd edn., Lectures on topological fluid mechanicsSpringer-Verlag, New York
[65] Kauffman LH, Lambropoulou S (2004) On the classification of rational tangles. Adv Appl Math 33(2):199-237 · Zbl 1057.57006 · doi:10.1016/j.aam.2003.06.002
[66] Kececioglu J, Sankoff D (1993) Exact and approximation algorithms for the inversion distance between two chromosomes. In: Combinatorial pattern matching, Lecture Notes in computer science, vol 684. Springer Berlin, Heidelberg, pp 87-105 · Zbl 1046.92020
[67] Kim S, Darcy IK (2009) Topological analysis of dna-protein complexes. In: Mathematics of DNA structure, function and interactions, pp 177-194
[68] Klippel A, Kanaar R, Kahmann R, Cozzarelli NR (1993) Analysis of strand exchange and dna binding of enhancer-independent gin recombinase mutants. EMBO J 12(3):1047
[69] Laing C, Schlick T (2011) Computational approaches to RNA structure prediction, analysis, and design. Curr Opin Struct Biol 21(3):306-318 · doi:10.1016/j.sbi.2011.03.015
[70] Li W, Kamtekar S, Xiong Y, Sarkis GJ, Grindley NDF, Steitz TA (2005) Structure of a synaptic \[\gamma \delta\] γδ resolvase tetramer covalently linked to two cleaved DNAs. Science 309(5738):1210-1215 · doi:10.1126/science.1112064
[71] Li Z, Wang L, Zhang K (2006) Algorithmic approaches for genome rearrangement: a review. IEEE Trans Syst Man Cybern Part C Appl Rev 36(5):636-648 · doi:10.1109/TSMCC.2005.855522
[72] Liang Y, Hou X, Wang Y, Cui Z, Zhang Z, Zhu X, Xia L, Shen X, Cai H, Wang J et al (2010) Genome rearrangements of completely sequenced strains of Yersinia pestis. J Clin Microbiol 48(5):1619-1623 · doi:10.1128/JCM.01473-09
[73] Lin YC, Lin CY, Lin CR (2009) Sorting by reversals and block-interchanges with various weight assignments. BMC Bioinform 10(1):398 · doi:10.1186/1471-2105-10-398
[74] Liu LF, Liu CC, Alberts BM (1980) Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell 19(3):697-707 · doi:10.1016/S0092-8674(80)80046-8
[75] Liu LF, Perkocha L, Calendar R, Wang JC (1981) Knotted DNA from bacteriophage capsids. Proc Natl Acad Sci USA 78(9):5498-5502 · doi:10.1073/pnas.78.9.5498
[76] López V, Martínez-Robles ML, Hernández P, Krimer DB, Schvartzman JB (2011) Topo iv is the topoisomerase that knots and unknots sister duplexes during dna replication. Nucleic Acids Res (in press)
[77] Marenduzzo D, Orlandini E, Stasiak A, Sumners DW, Tubiana L, Micheletti C (2009) DNA-DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting. Proc Natl Acad Sci USA 106(52):22269-22274 · doi:10.1073/pnas.0907524106
[78] Markov AA (1935) Über die freie äquivalenz geschlossener zöpfe. Recueil Mathematique Moscou 1:73-78 · Zbl 0014.04202
[79] Meidanis J, Dias Z (2000) An alternative algebraic formalism for genome rearrangements. In: Comparative genomics: empirical and analytical approaches to gene order dynamics, map alignment and evolution of gene families, pp 213-223 · Zbl 1137.92341
[80] Miklós I, Hein J (2005) Genome rearrangement in mitochondria and its computational biology. Comp Genomics, pp 85-96 · Zbl 1117.92320
[81] Morton H, Traczyk P (1990) Contribuciones en homenaje al profesor D. Antonio Plans Sanz de Bremond. Knots and algebras. University of Zaragoza, Zaragoza, pp 201-220
[82] Morton HR (2010) A basis for the Birman-Wenzl algebra. arXiv:1012.3116v1 (arXiv e-prints)
[83] Moulton V, Steel M (2011) The “Butterfly effect” in Cayley graphs with applications to genomics. J Math Biol 1-18 · Zbl 1260.20002
[84] Murakami J (1987) The Kauffman polynomial of links and representation theory. Osaka J Math 24(4):745-758 · Zbl 0666.57006
[85] Murasugi Kunio (2007) Knot theory and its applications. Birkhäuser, Boston · Zbl 1138.57001
[86] Murasugi Kunio, Kurpita Bohdan (1999) A study of braids, vol 484. Springer, New York · Zbl 0938.57001 · doi:10.1007/978-94-015-9319-9
[87] Ohlebusch E, Abouelhoda MI, Hockel K, Stallkamp J (2005) The median problem for the reversal distance in circular bacterial genomes. In: Combinatorial pattern matching. Lecture notes in computer science. Springer, New York, pp 116-127 · Zbl 1130.92302
[88] Orellana R, Ram A (2004) Affine braids, Markov traces and the category \[\cal OO. In\]: Proceedings of the international colloquium on algebraic groups and homogeneous spaces. TIFR, Mumbai, pp 1-51 · Zbl 1172.17009
[89] Pachter L, Sturmfels B (2005) Algebraic statistics for computational biology, vol 13. Cambridge Univ Press, Cambridge · Zbl 1108.62118 · doi:10.1017/CBO9780511610684
[90] Pinter R, Skiena S (2002) Sorting with length-weighted reversals. In: Proceeding of the 13th international conference on genome informatics (GIW 2002), pp 173-182
[91] Pistone G, Riccomagno E, Wynn HP (2001) Algebraic statistics: computational commutative algebra in statistics, vol 89. In: Monographs on statistics and applied probability. Chapman & Hall/CRC, Boca Raton (ISBN 1-58488-204-2) · Zbl 0960.62003
[92] Postow L, Peter BJ, Cozzarelli NR (1999) Knot what we thought before: the twisted story of replication. Bioessays 21(10):805-808 · doi:10.1002/(SICI)1521-1878(199910)21:10<805::AID-BIES1>3.0.CO;2-7
[93] Postow L, Crisona NJ, Peter BJ, Hardy CD, Cozzarelli NR (2001) Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci USA 98(15):8219-8226 · doi:10.1073/pnas.111006998
[94] R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org (ISBN 3-900051-07-0)
[95] Reijns M, Lu Y, Leach S, Colloms SD (2005) Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol Microbiol 57(4):927-941 · doi:10.1111/j.1365-2958.2005.04716.x
[96] Sachs Rainer K, Arsuaga Javier, Vázquez Mariel, Hlatky Lynn, Hahnfeldt Philip (2002) Using graph theory to describe and model chromosome aberrations. Radiat Res 158(5):556-567 · doi:10.1667/0033-7587(2002)158[0556:UGTTDA]2.0.CO;2
[97] Sankoff D, Lefebvre JF, Tillier E, Maler A, El-Mabrouk N (2004) The distribution of inversion lengths in prokaryotes. In: International workshop on comparative genomics, RECOMB 2004, RCG, vol 3388, pp 97-108 · Zbl 1117.92321
[98] Schmittel A (2009) Controversies in the treatment of advanced stages of small cell lung cancer. Frontiers Radiat Therapy Oncol 42:193-197 · doi:10.1159/000262476
[99] Shi J (1986) The Kazhdan-Lusztig cells in certain affine Weyl groups. Springer-Verlag, New York · Zbl 0582.20030
[100] Sitharam M, Agbandje-Mckenna M (2006) Modeling virus self-assembly pathways: avoiding dynamics using geometric constraint decomposition. J Comput Biol 13(6):1232-1265 · doi:10.1089/cmb.2006.13.1232
[101] Stahl FW, Murray NE (1966) The evolution of gene clusters and genetic circularity in microorganisms. Genetics 53(3):569-576
[102] Stein WA et al (2011) Sage mathematics software (version 4.7.2). The Sage Development Team, UK (http://www.sagemath.org) · Zbl 0871.57002
[103] Sumner JG, Charleston MA, Jermiin LS, Jarvis PD (2008) Markov invariants, plethysms, and phylogenetics. J Theor Biol 253(3):601-615 · Zbl 1398.92188 · doi:10.1016/j.jtbi.2008.04.001
[104] Sumners DW, Ernst C, Spengler SJ, Cozzarelli NR (1995) Analysis of the mechanism of DNA recombination using tangles. Q Rev Biophys 28(03):253-313 · doi:10.1017/S0033583500003498
[105] Swidan F, Bender MA, Ge D, He S, Hu H, Pinter RY (2004), Sorting by length-weighted reversals: dealing with signs and circularity. In: Lecture notes in computer science, pp 32-46 · Zbl 1103.68492
[106] Tawn S (2008) A presentation for Hilden’s subgroup of the braid group. Math Res Lett 15(6):1277-1293 (ISSN 1073-2780) · Zbl 1166.57001
[107] Temperley HNV (1971) Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problems. Proc R Soc Lond A Math Phys Sci 322(1549):251-280 · Zbl 0211.56703 · doi:10.1098/rspa.1971.0067
[108] Turaev VG (2010) Quantum invariants of knots and 3-manifolds, vol 18, 2nd edn. Walter de Gruyter, Berlin · Zbl 1213.57002 · doi:10.1515/9783110221848
[109] Valencia K, Buck D (2011) Predicting knot and catenane type of products of site-specific recombination on twist knot substrates. J Mol Biol 411:350-367 · doi:10.1016/j.jmb.2011.05.048
[110] Vazquez M, Sumners DW (2004) Tangle analysis of Gin site-specific recombination. Math Proc Camb Philos Soc 136(3):565-582 · Zbl 1046.92020 · doi:10.1017/S0305004103007266
[111] Vazquez M, Colloms SD, De Sumners W (2005) Tangle analysis of Xer recombination reveals only three solutions, all consistent with a single three-dimensional topological pathway. J Mol Biol 346(2):493-504 · doi:10.1016/j.jmb.2004.11.055
[112] Vetcher AA, Lushnikov AY, Navarra-Madsen J, Scharein RG, Lyubchenko YL, Darcy IK, Levene SD (2006) DNA topology and geometry in Flp and Cre recombination. J Mol Biol 357(4):1089-1104 · doi:10.1016/j.jmb.2006.01.037
[113] Wasserman SA, Cozzarelli NR (1985) Determination of the stereostructure of the product of Tn3 resolvase by a general method. Proc Natl Acad Sci USA 82(4):1079-1083 · doi:10.1073/pnas.82.4.1079
[114] Wasserman SA, Duncan JM, Cozzarelli NR (1985) Discovery of a predicted DNA knot substantiates a model for site-specific recombination. Science 229:171-174 · doi:10.1126/science.2990045
[115] Watterson GA, Ewens WJ, Hall TE, Morgan A (1982) The chromosome inversion problem. J Theor Biol 99(1):1-7. doi:10.1016/0022-5193(82)90384-8. http://www.sciencedirect.com/science/article/B6WMD-4F1J81C-HY/2/6d9edcfcfaee64386aa660680e8fa0a5 (ISSN 0022-5193)
[116] Yang W (2010) Topoisomerases and site-specific recombinases: similarities in structure and mechanism. Crit Rev Biochem Mol Biol 45(6):520-534 · doi:10.3109/10409238.2010.513375
[117] York TL, Durrett R, Nielsen R (2002) Bayesian estimation of the number of inversions in the history of two chromosomes. J Comput Biol 9(6):805-818 · doi:10.1089/10665270260518281
[118] Yu S (2007) The cyclotomic Birman-Murakami-Wenzl algebras. PhD thesis, University of Sydney, Sydney · Zbl 1266.20007
[119] Zechiedrich EL, Cozzarelli NR (1995) Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev 9(22):2859-2869 · doi:10.1101/gad.9.22.2859
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.