×

The ‘Butterfly effect’ in Cayley graphs with applications to genomics. (English) Zbl 1260.20002

Summary: Suppose a finite set \(X\) is repeatedly transformed by a sequence of permutations of a certain type acting on an initial element \(x\) to produce a final state \(y\). For example, in genomics applications, \(X\) could be a set of genomes and the permutations certain genome ‘rearrangements’ or, in group theory, \(X\) could be the set of configurations of a Rubik’s cube and the permutations certain specified moves. We investigate how ‘different’ the resulting state \(y'\) to \(y\) can be if a slight change is made to the sequence, either by deleting one permutation, or replacing it with another. Here the ‘difference’ between \(y\) and \(y'\) might be measured by the minimum number of permutations of the permitted type required to transform \(y\) to \(y'\), or by some other metric. We discuss this first in the general setting of sensitivity to perturbation of walks in Cayley graphs of groups with a specified set of generators. We then investigate some permutation groups and generators arising in computational genomics, and the statistical implications of the findings.

MSC:

20B05 General theory for finite permutation groups
20F05 Generators, relations, and presentations of groups
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
92D15 Problems related to evolution
Full Text: DOI

References:

[1] Alon N, Spencer J (1992) The probabilistic method. Wiley, New York · Zbl 0767.05001
[2] Bafna V, Pevzner PA (1996) Genome rearrangements and sorting by reversals. SIAM J Comput 25(2): 272–289 · Zbl 0844.68123 · doi:10.1137/S0097539793250627
[3] Bergeron A, Mixtacki J, Stoye J (2009) A new linear time algorithm to compute the genomic distance via the double cut and join distance. Theor Comput Sci 410(51): 5300–5316 · Zbl 1186.68144 · doi:10.1016/j.tcs.2009.09.008
[4] Chen T, Skiena S (1996) Sorting with fixed-length reversals. Discret Appl Math 71: 269–295 · Zbl 0870.68052 · doi:10.1016/S0166-218X(96)00069-8
[5] Chin LL, Ying CL, Yen LH, Chuan YT (2007) Analysis of genome rearrangement by block-interchanges. Methods Mol Biol 396: 121–134 · doi:10.1007/978-1-59745-515-2_9
[6] Daskalakis C, Mossel E, Roch S (2010) Evolutionary trees and the Ising model on the Bethe lattice: a proof of Steel’s conjecture. Probab Theor Relat Fields 149: 149–189 · Zbl 1221.92063 · doi:10.1007/s00440-009-0246-2
[7] Eppstein DBA (1992) Word processing in groups. A K Peters/CRC Press, New York
[8] Erdös PL, Steel MA, Székely LA, Warnow T (1999) A few logs suffice to build (almost) all trees (part 1). Rand Struct Alg 14(2): 153–184 · Zbl 0945.60004 · doi:10.1002/(SICI)1098-2418(199903)14:2<153::AID-RSA3>3.0.CO;2-R
[9] Evans SN, Speed TP (1993) Invariants of some probability models used in phylogenetic inference. Ann Stat 21: 355–377 · Zbl 0772.92012 · doi:10.1214/aos/1176349030
[10] Fertin G, Labarre A, Rusu I, Tannier E, Vialette S (2009) Combinatorics of genome rearrangements. The MIT Press, Cambridge · Zbl 1170.92022
[11] Gronau I, Moran S, Snir S (2008) Fast and reliable reconstruction of phylogenetic trees with very short edges. In: SODA: ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics, Philadelphia, pp. 379–388 · Zbl 1192.05030
[12] Hannenhalli S, Pevzner PA (1999) Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations via reversals. J Assoc Comput Mach 46(1): 1–27 · Zbl 1064.92510 · doi:10.1145/300515.300516
[13] Hilborn RC (2004) Sea gulls, butterflies, and grasshoppers: a brief history of the butterfly effect in nonlinear dynamics. Am J Phys 72(4): 425–427 · doi:10.1119/1.1636492
[14] Holmgren R (1994) A first course in discrete dynamical systems, 2nd edn. Springer, New York · Zbl 0797.58001
[15] Kececioglu JD, Sankoff D (1995) Exact and approximate algorithms for sorting by reversals with application to genome rearrangement. Algorithmica 13: 180–210 · Zbl 0831.92014 · doi:10.1007/BF01188586
[16] Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78: 454–458 · Zbl 0511.92013 · doi:10.1073/pnas.78.1.454
[17] Kostantinova E (2008) Some problems on Cayley graphs. Linear Algebra Appl. 429: 2754–2769 · Zbl 1148.05037 · doi:10.1016/j.laa.2008.05.010
[18] Kunkle D, Cooperman G (2009) Harnessing parallel disks to solve Rubik’s cube. J Symb Comput 44(7): 872–890 · Zbl 1200.05012 · doi:10.1016/j.jsc.2008.04.013
[19] Labarre L (2006) New bounds and tractable instances for the transposition distance. IEEE/ACM Trans Comput Biol Bioinf 3(4): 380–394 · doi:10.1109/TCBB.2006.56
[20] Mossel E, Steel M (2005) How much can evolved characters tell us about the tree that generated them? In: Gascuel O (ed) Mathematics of evolution and phylogeny. Oxford University Press, Oxford, pp 384–412 · Zbl 1090.92034
[21] Pevzner P (2000) Computational molecular biology. MIT Press, Cambridge · Zbl 0972.92011
[22] Rotman JJ (1995) An introduction to the theory of groups. Springer, New York
[23] Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4): 406–425
[24] Sankoff D, Blanchette M (1997) The median problem for breakpoints in comparative genomics. Computing and Combinatorics, Shanghai, pp 251–263 · Zbl 0889.92023
[25] Sankoff D, Blanchette M (1998) Multiple genome rearrangement and breakpoint phylogeny. J Comput Biol 5: 555–570 · doi:10.1089/cmb.1998.5.555
[26] Setubal J, Meidanis M (1997) Introduction to computational molecular biology. PWS Publishing Company, Boston
[27] Semple C, Steel M (2003) Phylogenetics. Oxford University Press, Oxford
[28] Sinha A, Meller J (2008) Sensitivity analysis for reversal distance and breakpoint re-use in genome rearrangements. Pac J Biocomput 13: 37–48
[29] Steele J.M. (1986) An Efron-Stein inequality for nonsymmetric statistics. Ann Stat 14(2): 753–758 · Zbl 0604.62017 · doi:10.1214/aos/1176349952
[30] Trifonov V, Rabadan R (2010) Frequency analysis techniques for identification of viral genetic data. mBio 1(3): e00156-10 · doi:10.1128/mBio.00156-10
[31] Wang L-S (2002) Genome rearrangement phylogeny using weighbor. In: Lecture Notes for Computer Sciences No. 2452. Proceedings for the second workshop on algorithms in bioinformatics (WABI’02), Rome, pp 112–125
[32] Wang L-S, Warnow T (2005) Distance-based genome rearrangement phylogeny. In: Gascuel O (eds) Mathematics of evolution and phylogeny. Oxford University Press, Oxford, pp 353–380 · Zbl 1090.92035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.