×

QTT-finite-element approximation for multiscale problems. I: Model problems in one dimension. (English) Zbl 1375.65152

From the Abstract: “Tensor-compressed numerical solution of elliptic multiscale-diffusion and high frequency scattering problems is considered.”
From the Introduction: “The outline of this paper is as follows: In Section 2, we introduce the model problems, their variational formulations and the standard finite element (FE) discretizations. The quantized tensor train (QTT) decomposition and related notions are recapitulated in Section 3.2. Section 3 provides a short summary of quantized FE approximations. Section 4 introduces the homogenization problem, the asymptotic analysis of its solution and provides scale-separated finite-dimensional approximations with exponential convergence rate bounds which are interesting in their own right. These bounds are subsequently used to prove logarithmic in accuracy QTT rank bounds for the quantized FE solution vectors. Section 5 is devoted to the same program for the high frequency Helmholtz equation, where we prove QTT rank bounds which are mildly depending on the wavenumber and, again, logarithmic in accuracy. For the practical implementation of quantized tensor train FE methods, analogous rank bounds for the stiffness and mass matrices are required, and we prove this in Section 6. Finally, we provide in Section 7 numerical experiments which show that the logarithmic in accuracy, and scale-robust tensor rank bounds of QTT FE approximations are achieved in practice, for the problem classes under consideration here.”

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
15A69 Multilinear algebra, tensor calculus
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Software:

redbKIT
Full Text: DOI

References:

[1] Andreev, R., Tobler, C.: Multilevel preconditioning and low-rank tensor iteration for spacetime simultaneous discretizations of parabolic pdes. Numer. Linear Algebra Appl. 22(2), 317-337 (2015). doi:10.1002/nla.1951 · Zbl 1363.65156 · doi:10.1002/nla.1951
[2] Babuška, I.: Error-bounds for finite element method. Numer. Math. 16(4), 322-333 (1971). doi:10.1007/BF02165003 · Zbl 0214.42001 · doi:10.1007/BF02165003
[3] Bachmayr, M., Dahmen, W.: Adaptive low-rank methods for problems on Sobolev spaces with error control in L2. arXiv:1412.3951. (2014) · Zbl 1347.41031
[4] Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging processes in periodic media, Mathematics and its Applications, vol. 36. Springer. doi:10.1007/978-94-009-2247-1 · Zbl 0692.73012
[5] Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. doi:10.1002/nla.1818 (2012) · Zbl 1289.65049
[6] Buffa, A., Sangalli, G., Schwab, C.: Exponential convergence of the hp version of isogeometric analysis in 1D. In: Proceedings. doi:10.1007/978-3-319-01601-6_15 (2014) · Zbl 1282.65090
[7] Davis, P.J.: Interpolation and approximation. Dover Publications (1975) · Zbl 0329.41010
[8] Dolgov, S., Khoromskij, B., Oseledets, I.: Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the fokker-planck equation. SIAM J. Sci. Comput. 34(6), A3016-A3038 (2012). doi:10.1137/120864210 · Zbl 1259.82075 · doi:10.1137/120864210
[9] Dolgov, S.V., Kazeev, V.A., Khoromskij, B.N.: The tensor-structured solution of one-dimensional elliptic differential equations with high-dimensional parameters. Preprint 51, Max-Planck-Institut für Mathematik in den Naturwissenschaften. http://www.mis.mpg.de/publications/preprints/2012/prepr2012-51.html (2012)
[10] Dolgov, S.V., Khoromskij, B.N.: Tensor-product approach to global time-space-parametric discretization of chemical master equation. Preprint 68, Max-Planck-Institut für Mathematik in den Naturwissenschaften. http://www.mis.mpg.de/publications/preprints/2012/prepr2012-68.html (2012) · Zbl 0214.42001
[11] Dolgov, S.V., Khoromskij, B.N., Oseledets, I.V., Tyrtyshnikov, E.E.: Tensor structured iterative solution of elliptic problems with jumping coefficients. Preprint 55, Max-Planck-Institut für Mathematik in den Naturwissenschaften. http://www.mis.mpg.de/publications/preprints/2010/prepr2010-55.html (2010) · Zbl 1265.35053
[12] Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in higher dimensions. SIAM J. Sci. Comput. 36(5), A2248-A2271 (2014). doi:10.1137/140953289 · Zbl 1307.65035 · doi:10.1137/140953289
[13] Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix Analysis and Applications 31(4), 2029-2054 (2010). doi:10.1137/090764189. http://link.aip.org/link/?SML/31/2029/1 · Zbl 1210.65090 · doi:10.1137/090764189
[14] Grasedyck, L.: Polynomial approximation in hierarchical Tucker format by vector-tensorization. Preprint 308, Institut für Geometrie und Praktische Mathematik, RWTH Aachen. http://www.igpm.rwth-aachen.de/Download/reports/pdf/IGPM308_k.pdf (2010) · Zbl 1232.15018
[15] Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53-78 (2013). doi:10.1002/gamm.201310004 · Zbl 1279.65045 · doi:10.1002/gamm.201310004
[16] Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus, Springer Series in Computational Mathematics, vol. 42. Springer (2012). doi:10.1007/978-3-642-28027-6. http://www.springerlink.com/content/l62t86 · Zbl 1244.65061
[17] Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706-722 (2009). doi:http://www.springerlink.com/content/t3747nk47m368g44, 10.1007/s00041-009-9094-9 · Zbl 1188.15022 · doi:10.1007/s00041-009-9094-9
[18] Hoang, V.H., Schwab, C.: High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3(1), 168-194 (2005). doi:10.1137/030601077 · Zbl 1074.65135 · doi:10.1137/030601077
[19] Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimization in the Tensor Train format. SIAM J. Sci. Comput. 34(2), A683-A713 (2012). doi:10.1137/100818893 · Zbl 1252.15031 · doi:10.1137/100818893
[20] Ihlenburg, F.: Finite element analysis of acoustic scattering, Applied Mathematical Sciences, vol. 132. Springer, New York (1998). doi:10.1007/b98828 · Zbl 0908.65091 · doi:10.1007/b98828
[21] Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer (1994). http://www.springer.com/book/9783642846618 · Zbl 0838.35001
[22] Kau, H.T.: An inequality for algebraic polynomials, and the dependence between the best polynomial approximations e(f)Lp \(e(f)_{L_p}\) and e(f)Lq \(e(f)_{L_q}\) of functions f(x)Lp (in Russian). Acta Math. Acad. Sci. Hung. 27 (1-2), 141-147 (1976). doi:10.1007/BF01896769 · Zbl 0338.41023 · doi:10.1007/BF01896769
[23] Kazeev, V.: Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. Ph.D. thesis, SAM, ETH Zurich, ETH Dissertation No. 23002. doi:10.3929/ethz-a-010554062. http://e-collection.library.ethz.ch/view/eth:48314 · Zbl 1382.65409
[24] Kazeev, V.: Tensor-structured multilevel approximation of polynomial and piecewise-analytic functions (in preparation) · Zbl 1454.65160
[25] Kazeev, V., Khammash, M., Nip, M., Schwab, C.: Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput. Biol. 10 (3) (2014). doi:10.1371/journal.pcbi.1003359 · Zbl 1232.15018
[26] Kazeev, V., Reichmann, O., Schwab, C.: hp-DG-QTT solution of high-dimensional degenerate diffusion equations. Research Report 11, Seminar for Applied Mathematics, ETH Zürich. http://www.sam.math.ethz.ch/reports/2012/11 (2012)
[27] Kazeev, V., Reichmann, O., Schwab, C.: Low-rank tensor structure of linear diffusion operators in the TT and QTT formats. Linear Algebra Appl. (2013). doi:10.1016/j.laa.2013.01.009 · Zbl 1281.15024
[28] Kazeev, V., Schwab, C.: Approximation of singularities by quantized-tensor FEM. In: Proceedings in Applied Mathematics and Mechanics. doi:10.1002/pamm.201510353, vol. 15, pp 743-746 (2015)
[29] Kazeev, V., Schwab, C.: Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. Research Report 24, Seminar for Applied Mathematics, ETH Zürich. http://www.sam.math.ethz.ch/reports/2015/24 (2015) · Zbl 1382.65409
[30] Kazeev, V., Schwab, C.: Tensor approximation of stationary distributions of chemical reaction networks. SIAM J. Matrix Anal. Appl. 36(3), 1221-1247 (2015). doi:10.1137/130927218 · Zbl 1322.60155 · doi:10.1137/130927218
[31] Kazeev, V.A., Khoromskij, B.N.: Low-rank explicit QTT representation of the Laplace operator and its inverse. SIAM J. Matrix Anal. Appl. 33(3), 742-758 (2012). doi:10.1137/100820479 · Zbl 1268.15025 · doi:10.1137/100820479
[32] Kazeev, V.A., Khoromskij, B.N., Tyrtyshnikov, E.E.: Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity. SIAM J. Sci. Comput. (2013) · Zbl 1275.15018
[33] Khoromskij, B.N.: 𝓞(dn)\( \mathcal{O}(d n)\)-quantics approximation of n-d tensors in high-dimensional numerical modeling. Constr. Approx. 34(2), 257-280 (2011). doi:10.1007/s00365-011-9131-1 · Zbl 1228.65069 · doi:10.1007/s00365-011-9131-1
[34] Khoromskij, B.N., Khoromskaia, V., Flad, H.J.: Numerical solution of the Hartre-Fock equation in multilevel tensor-structured format. SIAM J. Sci. Comput. 33(1), 45-65 (2011). doi:10.1137/090777372. http://link.aip.org/link/?SCE/33/45/1 · Zbl 1227.65113 · doi:10.1137/090777372
[35] Khoromskij, B.N., Oseledets, I.V.: A fast iteration method for solving elliptic problems with quasiperiodic coefficients. Russ. J. Numer. Anal. Math. Model. 30(6), 329-344 (2015). doi:10.1515/rnam-2015-0030. http://www.degruyter.com/view/j/rnam.2015.30.issue-6/rnam-2015-0030/rnam-2015-0030.xml · Zbl 1328.65098 · doi:10.1515/rnam-2015-0030
[36] Khoromskij, B.N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33(1), 364-385 (2011). http://epubs.siam.org/sisc/resource/1/sjoce3/v33/i1/p364_s1 · Zbl 1243.65009 · doi:10.1137/100785715
[37] Kressner, D., Steinlechner, M., Uschmajew, A.: Low-rank tensor methods with subspace correction for symmetric eigenvalue problems. Technical report 40, MATHICSE EPFL. http://sma.epfl.ch/ anchpcommon/publications/EVAMEN.pdf (2013) · Zbl 1307.65040
[38] Kressner, D., Steinlechner, M., Vandereycken, B.: A fast iteration method for solving elliptic problems with quasiperiodic coefficients. arXiv:1508.02988 (2015) · Zbl 1382.65089
[39] Maday, Y., Mula, O., Turinici, G.: Convergence analysis of the generalized empirical interpolation method. Tech. rep., HAL-UPMC. http://hal.upmc.fr/file/index/docid/1032458/filename/maday_mula_turinici_ConvRates_SINUM_Submitted.pdf · Zbl 1347.41044
[40] Nessel, R.J., Wilmes, G.: Nikolskii-type inequalities for trigonometric polynomials and entire functions of exponential type. J. Aust. Math. Soc. Ser. A 25, 7-18 (1978). doi:10.1017/S1446788700038878 · Zbl 0376.42001 · doi:10.1017/S1446788700038878
[41] Oseledets, I.: Approximation of matrices with logarithmic number of parameters. Dokl. Math. 80, 653-654 (2009). doi:10.1134/S1064562409050056 · Zbl 1181.65065 · doi:10.1134/S1064562409050056
[42] Oseledets, I., Dolgov, S.: Solution of linear systems and matrix inversion in the TT-format. SIAM J. Sci. Comput. 34(5), A2718-A2739 (2012). doi:10.1137/110833142 · Zbl 1259.65071 · doi:10.1137/110833142
[43] Oseledets, I.V.: Approximation of 2d2d matrices using tensor decomposition. SIAM J. Matrix Anal. Appl. 31(4), 2130-2145 (2010). doi:10.1137/090757861. http://link.aip.org/link/?SML/31/2130/1 · Zbl 1200.15005 · doi:10.1137/090757861
[44] Oseledets, I.V.: Tensor train decomposition. SIAM J. Sci. Comput. 33(5), 2295-2317 (2011). doi:10.1137/090752286 · Zbl 1232.15018 · doi:10.1137/090752286
[45] Oseledets, I.V.: Constructive representation of functions in tensor formats. Constr. Approx. 37, 1-18 (2013). http://link.springer.com/article/10.1007/s00365-012-9175-x · Zbl 1282.15021 · doi:10.1007/s00365-012-9175-x
[46] Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744-3759 (2009). doi:10.1137/090748330. http://epubs.siam.org/sisc/resource/1/sjoce3/v31/i5/p3744_s1 · Zbl 1200.65028 · doi:10.1137/090748330
[47] Pinkus, A.: n-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7. Springer, Berlin (1985). doi:10.1007/978-3-642-69894-1 · Zbl 0551.41001 · doi:10.1007/978-3-642-69894-1
[48] Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations, UNITEXT, vol. 92. Springer (2016). http://link.springer.com/book/10.1007/978-3-319-15431-2 · Zbl 1337.65113
[49] Schwab, C.: P- and Hp-FEM: Theory and Application to Solid and Fluid Mechanics. Oxford University Press, Oxford (1998) · Zbl 0910.73003
[50] Tyrtyshnikov, E.E.: Tensor approximations of matrices generated by asymptotically smooth functions. Sbornik: Math. 194 (5), 941-954 (2003). doi:10.1070/SM2003v194n06ABEH000747. http://iopscience.iop.org/1064-5616/194/6/A09 · Zbl 1067.65044 · doi:10.1070/SM2003v194n06ABEH000747
[51] Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for hpk-refinement in isogeometric analysis. Numer. Math. 118(2), 271-305 (2011). doi:10.1007/s00211-010-0338-z · Zbl 1222.41010 · doi:10.1007/s00211-010-0338-z
[52] Verstraete, F., Porras, D., Cirac, J.I.: Density matrix renormalization group and periodic boundary conditions: A quantum information perspective. Phys. Rev. Lett. 93(22), 227,205 (2004). doi:10.1103/PhysRevLett.93.227205 · doi:10.1103/PhysRevLett.93.227205
[53] Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91(14), 147,902 (2003). doi:10.1103/PhysRevLett.91.147902 · doi:10.1103/PhysRevLett.91.147902
[54] White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48(14), 10,345-10,356 (1993). doi:10.1103/PhysRevB.48.10345 · doi:10.1103/PhysRevB.48.10345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.