×

Modeling high-dimensional time-varying dependence using dynamic D-vine models. (English) Zbl 1411.62290

Summary: We consider the problem of modeling the dependence among many time series. We build high-dimensional time-varying copula models by combining pair-copula constructions with stochastic autoregressive copula and generalized autoregressive score models to capture dependence that changes over time. We show how the estimation of this highly complex model can be broken down into the estimation of a sequence of bivariate models, which can be achieved by using the method of maximum likelihood. Further, by restricting the conditional dependence parameter on higher cascades of the pair copula construction to be constant, we can greatly reduce the number of parameters to be estimated without losing much flexibility. Applications to five MSCI stock market indices and to a large dataset of daily stock returns of all constituents of the Dax 30 illustrate the usefulness of the proposed model class in-sample and for density forecasting.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62H05 Characterization and structure theory for multivariate probability distributions; copulas
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62L12 Sequential estimation

References:

[1] BauwensL, LaurentS, RomboutsJVK. Multivariate GARCH models: a survey. Journal of Applied Econometrics. 2006; 21: 79-109.
[2] HarveyAC, RuizE, ShephardN. Multivariate stochastic variance models. Review of Economic Studies. 1994; 61: 247-264. · Zbl 0805.90026
[3] YuJ, MeyerR. Multivariate stochastic volatility models: Bayesian estimation and model comparison. Econometric Reviews. 2006; 25: 361-384. · Zbl 1113.62133
[4] PattonAJ. Copula‐based models for financial time series. In Handbook of Financial Time Series, AndersenTG (ed.), DavisRA (ed.), KreissJ‐P (ed.), MikoschT (ed.) (eds). Springer Verlag: New York, 2009; 767-785. · Zbl 1178.91228
[5] CherubiniG, LucianoE, VecchiatoW. Copula Methods in Finance. John Wiley and Sons Ltd: Chichester, 2004. · Zbl 1163.62081
[6] SavuC, TredeM. Hierarchies of Archimedean copulas. Quantitative Finance. 2010; 10: 295-304. · Zbl 1270.91086
[7] OkhrinO, OkhrinY, SchmidW. On the structure and estimation of hierarchical Archimedean copulas. Journal of Econometrics. 2013; 173: 189-204. · Zbl 1443.62137
[8] OhDH, PattonAJ. Modelling dependence in high dimensions with factor copulas. Journal of Business and Economic Statistics. 2015; Forthcoming.
[9] AasK, CzadoC, FrigessiA, BakkenH. Pair‐copula constructions of multiple dependence. Insurance: Mathematics and Economics. 2009; 44: 182-198. · Zbl 1165.60009
[10] CholleteL, HeinenA, ValdesogoA. Modeling international financial returns with a multivariate regime‐switching copula. Journal of Financial Econometrics. 2009; 7: 437-480.
[11] DissmannJ, BrechmannE, CzadoC, KurowickaD. Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics and Data Analysis. 2013; 59: 52-69. · Zbl 1400.62114
[12] BrechmannE, CzadoC. COPAR - multivariate time series modeling using the copula autoregressive model. Applied Stochastic Models in Business and Industry. 2015; 31: 495-514. · Zbl 07883170
[13] PattonAJ. Modelling asymmetric exchange rate dependence. International Economic Review. 2006; 47: 527-556.
[14] DiasA, EmbrechtsP. 2004. Change‐point analysis for dependence structures in finance and insurance. In Risk Measures for the 21st Century, SzegoeG (ed.) (ed.). Wiley Finance Series: Chichester; 321-335.
[15] GiacominiE, HärdleW, SpokoinyV. Inhomogeneous dependency modelling with time varying copulae. Journal of Business and Economic Statistics. 2009; 27: 224-234.
[16] GarciaR, TsafackG. Dependence structure and extreme comovements in international equity and bond markets. Journal of Banking and Finance. 2011; 35: 1954-1970.
[17] StöberJ, CzadoC. Regime switches in the dependence structure of multidimensional financial data. Computational Statistics & Data Analysis. 2014; 76: 672-686. · Zbl 1506.62172
[18] HafnerCM, ReznikovaO. Efficient estimation of a semiparametric dynamic copula model. Computational Statistics and Data Analysis. 2010; 54: 2609-2627. · Zbl 1284.91472
[19] HafnerCM, MannerH. Dynamic stochastic copula models: estimation, inference and applications. Journal of Applied Econometrics. 2012; 7: 269-295.
[20] AlmeidaC, CzadoC. Bayesian inference for stochastic time‐varying copula models. Computational Statistics & Data Analysis. 2012; 56(6): 1511-1527. · Zbl 1243.62031
[21] CrealD, KoopmanS, LucasA. Generalized autoregressive score models with applications. Journal of Applied Econometrics. 2013; 28(5): 777-795.
[22] MannerH, ReznikovaO. A survey on time‐varying copulas: specification, simulations and application. Econometric Reviews. 2012; 31(6): 654-687. · Zbl 1491.62038
[23] HeinenA, ValdesogoA. Asymmetric CAPM dependence for large dimensions: the canonical vine autoregressive copula model, 2009. Available at SSRN: http://ssrn.com/abstract=1297506, CORE [1 September 2015].
[24] EngleRF. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics. 2002; 20: 339-350.
[25] SoMKP, YeungCYT. Vine‐copula GARCH model with dynamic conditional dependence. Computational Statistics & Data Analysis. 2014; 76: 655-671. · Zbl 1506.62170
[26] CrealD, TsayR. High‐dimensional dynamic stochastic copula models. Journal of Econometrics. 2015; 189(2): 335-345. · Zbl 1337.62115
[27] OhDH, PattonAJ. Time‐varying systemic risk: evidence from a dynamic copula model of CDS spreads. Economic Research Initiatives at Duke (ERID) Working Paper (167), 2013.
[28] BlasquesF, KoopmanS, LucasA. Stationarity and ergodicity conditions for generalized autoregressive score processes. Electronic Journal of Statistics. 2014; 8: 1088-1112. · Zbl 1309.60034
[29] BlasquesF, KoopmanS, LucasA. Information theoretic optimality of observation driven time series models for continuous responses. Biometrika. 2015; 102(2): 325-343. · Zbl 1452.62620
[30] KoopmanSJ, LucasA, ScharthM. Predicting time‐varying parameters with parameter‐driven and observation‐driven models, 2015.
[31] JoeH. Multivariate Models and Dependence Concepts. Chapman & Hall/CRC: London, 1997. · Zbl 0990.62517
[32] NelsenR. An Introduction to Copulas. Springer: New York, 2006. · Zbl 1152.62030
[33] JoeH. Families of m‐variate distributions with given margins and m(m‐1)/2 bivariate dependence parameters. In Distributions with Fixed Marginals and Related Topics, RüschendorfL (ed.), SchweizerB (ed.), TaylorMD (ed.) (eds). Institute of Mathematical Statistics: Hayward, CA, 1996.
[34] BedfordT, CookeRM. Vines – a new graphical model for dependent random variables. Annals of Statistics. 2002; 30: 1031-1068. · Zbl 1101.62339
[35] BedfordT, CookeRM. Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial Intelligence. 2001; 32: 245-268. · Zbl 1314.62040
[36] KurowickaD, CookeR. Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley: Chichester, 2006. · Zbl 1096.62073
[37] KurowickaD, JoeH. Dependence Modeling - Handbook on Vine Copulae. World Scientific Publishing Co.: Singapore, 2011.
[38] CzadoC, BrechmannEC, GruberL. Selection of vine copulas. In Copulae in Mathematical and Quantitative Finance. Springer: New York, 2013; 17-37. · Zbl 1273.62110
[39] JoeH. Dependence Modeling with Copulas. CRC Press: Boca Raton, 2014. · Zbl 1346.62001
[40] CzadoC. Pair‐copula constructions of multivariate copulas. In Workshop on Copula Theory and its Applications, DuranteF (ed.), HärdleW (ed.), JaworkiP (ed.), RychlikT (ed.) (eds). Springer: Dortrech, 2010; 93-110.
[41] HaffIH, AasK, FrigessiA. On the simplified pair‐copula construction – simply useful or too simplistic?Journal of Multivariate Analysis. 2010; 101(5): 1296-1310. · Zbl 1184.62079
[42] StöberJ, JoeH, CzadoC. Simplified pair copula constructions – limitations and extensions. Journal of Multivariate Analysis. 2013; 119: 101-118. · Zbl 1277.62139
[43] AcarEF, GenestC, NešLehováJ. Beyond simplified pair‐copula constructions. Journal of Multivariate Analysis. 2012; 110: 74-90. · Zbl 1243.62067
[44] KurowickaD, CookeRM. Sampling algorithms for generating joint uniform distributions using the vine‐copula method. Computational Statistics & Data Analysis. 2007; 51(6): 2889-2906. · Zbl 1161.62363
[45] StöberJ, CzadoC. Pair copula constructions. In Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications, SchererM (ed.), MaiJ‐F (ed.) (eds). World Scientific Publishing: Singapore, 2011; 187-232.
[46] FischerM, KöckC, SchlüterS, WeigertF. An empirical analysis of multivariate copula models. Quantitative Finance. 2009; 9(7): 839-854. · Zbl 1180.91314
[47] de Melo MendesBV, SemeraroMM, LealRicardoPC. Pair‐copulas modeling in finance. Financial Markets and Portfolio Management. 2010; 24(2): 193-213.
[48] WeißGN, SupperH. Forecasting liquidity‐adjusted intraday value‐at‐risk with vine copulas. Journal of Banking & Finance. 2013; 37(9): 3334-3350.
[49] RighiMB, CerettaPS. Forecasting value at risk and expected shortfall based on serial pair‐copula constructions. Expert Systems with Applications. 2015; 42(17): 6380-6390.
[50] JoeH. Asymptotic efficiency of the two‐stage estimation method for copula‐based models. Journal of Multivariate Analysis. 2005; 94: 401-419. · Zbl 1066.62061
[51] GenestC, GhoudiK, RivestL‐P. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika. 1995; 82: 543-552. · Zbl 0831.62030
[52] KimG, SilvapulleMJ, SilvapulleP. Comparison of semiparametric and parametric methods for estimating copulas. Computational Statistics & Data Analysis. 2007; 51: 2836-2850. · Zbl 1161.62364
[53] RichardJF, ZhangW. Efficient high‐dimensional importance sampling. Journal of Econometrics. 2007; 141: 1385-1411. · Zbl 1420.65005
[54] LiesenfeldR, RichardJF. Univariate and multivariate stochastic volatility models: estimation and diagnostics. Journal of Empirical Finance. 2003; 10: 505-531.
[55] CzadoC, SchepsmeierU, MinA. Maximum likelihood estimation of mixed C‐vines with application to exchange rates. Statistical Modelling. 2012; 12(3): 229-255. · Zbl 07257878
[56] HaffIH. Estimating the parameters of a pair copula construction. Bernoulli. 2013; 19(2): 462-491. · Zbl 1456.62033
[57] MendesB, SemeraroM, LealR. Pair‐copulas modeling in finance. Financial Markets and Portfolio Management. 2011; 24: 193-213.
[58] BrechmannE, CzadoC, AasK. Truncated regular vines in high dimensions with application to financial data. Canadian Journal of Statistics. 2012; 40: 68-85. · Zbl 1274.62381
[59] BrechmannEC, CzadoC. Risk management with high‐dimensional vine copulas: an analysis of the Euro Stoxx 50. Statistics & Risk Modeling. 2013; 30(4): 307-342. · Zbl 1429.62462
[60] SchepsmeierU, BrechmannEC. Modeling dependence with C‐ and D‐Vine copulas: the R package CDVine. Journal of Statistical Software. 2013; 52(3): 1-27.
[61] JoeH, LiH, NikoloulopoulosA. Tail dependence functions and vine copulas. Journal of Multivariate Analysis. 2010; 101: 252-270. · Zbl 1177.62072
[62] MannerH, SegersJ. Tails of correlation mixtures of elliptical copulas. Insurance: Mathematics and Economics. 2011; 48: 153-160. · Zbl 1232.62080
[63] EngleRF, ManganelliS. CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business and Economic Statistics. 2004; 22: 367-381.
[64] KimD, KimJ‐M, LiaoS‐M, JungY‐S. Mixture of D‐vine copulas for modeling dependence. Computational Statistics & Data Analysis. 2013; 64: 1-19. · Zbl 1468.62099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.