×

Approximate Bacon-Shor code and holography. (English) Zbl 1466.83097

Summary: We explicitly construct a class of holographic quantum error correction codes with non-trivial centers in the code subalgebra. Specifically, we use the Bacon-Shor codes and perfect tensors to construct a gauge code (or a stabilizer code with gauge-fixing), which we call the holographic hybrid code. This code admits a local log-depth encoding/decoding circuit, and can be represented as a holographic tensor network which satisfies an analog of the Ryu-Takayanagi formula and reproduces features of the sub-region duality. We then construct approximate versions of the holographic hybrid codes by “skewing” the code subspace, where the size of skewing is analogous to the size of the gravitational constant in holography. These approximate hybrid codes are not necessarily stabilizer codes, but they can be expressed as the superposition of holographic tensor networks that are stabilizer codes. For such constructions, different logical states, representing different bulk matter content, can “back-react” on the emergent geometry, resembling a key feature of gravity. The locality of the bulk degrees of freedom becomes subspace-dependent and approximate. Such subspace-dependence is manifest from the point of view of the “entanglement wedge” and bulk operator reconstruction from the boundary. Exact complementary error correction breaks down for certain bipartition of the boundary degrees of freedom; however, a limited, state-dependent form is preserved for particular subspaces. We also construct an example where the connected two-point correlation functions can have a power-law decay. Coupled with known constraints from holography, a weakly back-reacting bulk also forces these skewed tensor network models to the “large \(N\) limit” where they are built by concatenating a large \(N\) number of copies.

MSC:

83E05 Geometrodynamics and the holographic principle
83C45 Quantization of the gravitational field
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81P42 Entanglement measures, concurrencies, separability criteria

References:

[1] Susskind, L., The World as a hologram, J. Math. Phys., 36, 6377 (1995) · Zbl 0850.00013 · doi:10.1063/1.531249
[2] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
[3] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[4] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[5] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602 (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[6] Van Raamsdonk, M., Building up spacetime with quantum entanglement, Gen. Rel. Grav., 42, 2323 (2010) · Zbl 1200.83052 · doi:10.1007/s10714-010-1034-0
[7] Maldacena, J.; Susskind, L., Cool horizons for entangled black holes, Fortsch. Phys., 61, 781 (2013) · Zbl 1338.83057 · doi:10.1002/prop.201300020
[8] Faulkner, T.; Guica, M.; Hartman, T.; Myers, RC; Van Raamsdonk, M., Gravitation from entanglement in holographic CFTs, JHEP, 03, 051 (2014) · Zbl 1333.83141 · doi:10.1007/JHEP03(2014)051
[9] Faulkner, T.; Haehl, FM; Hijano, E.; Parrikar, O.; Rabideau, C.; Van Raamsdonk, M., Nonlinear gravity from entanglement in conformal field theories, JHEP, 08, 057 (2017) · Zbl 1381.83099 · doi:10.1007/JHEP08(2017)057
[10] Stanford, D.; Susskind, L., Complexity and shock wave geometries, Phys. Rev. D, 90, 126007 (2014) · doi:10.1103/PhysRevD.90.126007
[11] Brown, AR; Roberts, DA; Susskind, L.; Swingle, B.; Zhao, Y., Holographic complexity equals bulk action?, Phys. Rev. Lett., 116, 191301 (2016) · doi:10.1103/PhysRevLett.116.191301
[12] Almheiri, A.; Dong, X.; Harlow, D., Bulk locality and quantum error correction in AdS/CFT, JHEP, 04, 163 (2015) · Zbl 1388.81095 · doi:10.1007/JHEP04(2015)163
[13] Cao, C.; Carroll, SM, Bulk entanglement gravity without a boundary: towards finding Einstein’s equation in Hilbert space, Phys. Rev. D, 97, 086003 (2018) · doi:10.1103/PhysRevD.97.086003
[14] Kim, I.; Tang, E.; Preskill, J., The ghost in the radiation: Robust encodings of the black hole interior, JHEP, 06, 031 (2020) · Zbl 1437.83063 · doi:10.1007/JHEP06(2020)031
[15] Swingle, B., Entanglement renormalization and holography, Phys. Rev. D, 86, 065007 (2012) · doi:10.1103/PhysRevD.86.065007
[16] G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett.101 (2008) 110501 [quant-ph/0610099] [INSPIRE].
[17] Beny, C., Causal structure of the entanglement renormalization ansatz, New J. Phys., 15, 023020 (2013) · Zbl 1451.81062 · doi:10.1088/1367-2630/15/2/023020
[18] Bao, N., Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence, Phys. Rev. D, 91, 125036 (2015) · doi:10.1103/PhysRevD.91.125036
[19] Czech, B.; Lamprou, L.; McCandlish, S.; Sully, J., Tensor networks from kinematic space, JHEP, 07, 100 (2016) · Zbl 1390.83102 · doi:10.1007/JHEP07(2016)100
[20] A. Milsted and G. Vidal, Geometric interpretation of the multi-scale entanglement renormalization ansatz, arXiv:1812.00529 [INSPIRE].
[21] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP, 06, 149 (2015) · Zbl 1388.81094 · doi:10.1007/JHEP06(2015)149
[22] Yang, Z.; Hayden, P.; Qi, X-L, Bidirectional holographic codes and sub-AdS locality, JHEP, 01, 175 (2016) · Zbl 1388.83147 · doi:10.1007/JHEP01(2016)175
[23] Hayden, P.; Nezami, S.; Qi, X-L; Thomas, N.; Walter, M.; Yang, Z., Holographic duality from random tensor networks, JHEP, 11, 009 (2016) · Zbl 1390.83344 · doi:10.1007/JHEP11(2016)009
[24] Kim, IH; Kastoryano, MJ, Entanglement renormalization, quantum error correction, and bulk causality, JHEP, 04, 040 (2017) · Zbl 1378.83022 · doi:10.1007/JHEP04(2017)040
[25] Kohler, T.; Cubitt, T., Toy models of holographic duality between local Hamiltonians, JHEP, 08, 017 (2019) · Zbl 1421.81118 · doi:10.1007/JHEP08(2019)017
[26] Bao, N.; Penington, G.; Sorce, J.; Wall, AC, Beyond toy models: distilling tensor networks in full AdS/CFT, JHEP, 11, 069 (2019) · Zbl 1429.81063 · doi:10.1007/JHEP11(2019)069
[27] Cotler, J.; Hayden, P.; Penington, G.; Salton, G.; Swingle, B.; Walter, M., Entanglement wedge reconstruction via universal recovery channels, Phys. Rev. X, 9, 031011 (2019)
[28] Hayden, P.; Penington, G., Learning the alpha-bits of black holes, JHEP, 12, 007 (2019) · Zbl 1431.83095 · doi:10.1007/JHEP12(2019)007
[29] Faist, P., Continuous symmetries and approximate quantum error correction, Phys. Rev. X, 10, 041018 (2020)
[30] R. Laflamme, C. Miquel, J.P. Paz and W.H. Zurek, Perfect quantum error correction code, quant-ph/9602019.
[31] J. Preskill, Lecture notes for physics 219: quantum computation, http://www.theory.caltech.edu/people/preskill/ph229/notes/chap7.pdf (1997-1998).
[32] Harlow, D., The Ryu-Takayanagi formula from quantum error correction, Commun. Math. Phys., 354, 865 (2017) · Zbl 1377.81040 · doi:10.1007/s00220-017-2904-z
[33] Donnelly, W., Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D, 85, 085004 (2012) · doi:10.1103/PhysRevD.85.085004
[34] Donnelly, W.; Michel, B.; Marolf, D.; Wien, J., Living on the edge: a toy model for holographic reconstruction of algebras with centers, JHEP, 04, 093 (2017) · Zbl 1378.81111 · doi:10.1007/JHEP04(2017)093
[35] Papadodimas, K.; Raju, S., State-dependent bulk-boundary maps and black hole complementarity, Phys. Rev. D, 89, 086010 (2014) · doi:10.1103/PhysRevD.89.086010
[36] Donnelly, W.; Giddings, SB, Observables, gravitational dressing, and obstructions to locality and subsystems, Phys. Rev. D, 94, 104038 (2016) · doi:10.1103/PhysRevD.94.104038
[37] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from conformal field theory, JHEP, 10, 079 (2009) · doi:10.1088/1126-6708/2009/10/079
[38] Aharony, O.; Gubser, SS; Maldacena, JM; Ooguri, H.; Oz, Y., Large N field theories, string theory and gravity, Phys. Rept., 323, 183 (2000) · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[39] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[40] Faulkner, T.; Lewkowycz, A.; Maldacena, J., Quantum corrections to holographic entanglement entropy, JHEP, 11, 074 (2013) · Zbl 1392.81021 · doi:10.1007/JHEP11(2013)074
[41] Bekenstein, JD, Black holes and the second law, Lett. Nuovo Cim., 4, 737 (1972) · doi:10.1007/BF02757029
[42] Bekenstein, JD, Black holes and entropy, Phys. Rev. D, 7, 2333 (1973) · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[43] Hamilton, A.; Kabat, DN; Lifschytz, G.; Lowe, DA, Holographic representation of local bulk operators, Phys. Rev. D, 74, 066009 (2006) · doi:10.1103/PhysRevD.74.066009
[44] Jafferis, DL; Lewkowycz, A.; Maldacena, J.; Suh, SJ, Relative entropy equals bulk relative entropy, JHEP, 06, 004 (2016) · Zbl 1388.83268 · doi:10.1007/JHEP06(2016)004
[45] Dong, X.; Harlow, D.; Wall, AC, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett., 117, 021601 (2016) · doi:10.1103/PhysRevLett.117.021601
[46] X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].
[47] Cao, C.; Carroll, SM; Michalakis, S., Space from Hilbert space: recovering geometry from bulk entanglement, Phys. Rev. D, 95, 024031 (2017) · doi:10.1103/PhysRevD.95.024031
[48] Giddings, SB, Quantum-first gravity, Found. Phys., 49, 177 (2019) · Zbl 1411.83023 · doi:10.1007/s10701-019-00239-1
[49] S.M. Carroll and A. Singh, Mad-dog everettianism: quantum mechanics at its most minimal, arXiv:1801.08132 [INSPIRE].
[50] Almheiri, A.; Dong, X.; Swingle, B., Linearity of holographic entanglement entropy, JHEP, 02, 074 (2017) · Zbl 1377.83035 · doi:10.1007/JHEP02(2017)074
[51] Akers, C.; Rath, P., Holographic Renyi entropy from quantum error correction, JHEP, 05, 052 (2019) · Zbl 1416.83095 · doi:10.1007/JHEP05(2019)052
[52] Dong, X.; Harlow, D.; Marolf, D., Flat entanglement spectra in fixed-area states of quantum gravity, JHEP, 10, 240 (2019) · Zbl 1427.83020 · doi:10.1007/JHEP10(2019)240
[53] Shor, PW, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, 52, R2493 (1995) · doi:10.1103/PhysRevA.52.R2493
[54] D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories, Phys. Rev. A73 (2006) 012340 [quant-ph/0506023].
[55] Bravyi, S., Subsystem codes with spatially local generators, Phys. Rev. A, 83, 012320 (2011) · doi:10.1103/PhysRevA.83.012320
[56] D. Poulin, Stabilizer formalism for operator quantum error correction, Phys. Rev. Lett.95 (2005) 230504 [quant-ph/0508131].
[57] Z. Jiang and E.G. Rieffel, Non-commuting two-local Hamiltonians for quantum error suppression, arXiv:1511.01997. · Zbl 1373.81164
[58] Bacon, D.; Lidar, D.; Whaley, K., Robustness of decoherence-free subspaces for quantum computation, Phys. Rev. A, 60, 1944 (1999) · doi:10.1103/PhysRevA.60.1944
[59] J. Haah and J. Preskill, Logical operator tradeoff for local quantum codes, arXiv:1011.3529.
[60] Bravyi, S.; Terhal, B., A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes, New J. Phys., 11, 043029 (2009) · doi:10.1088/1367-2630/11/4/043029
[61] Flammia, ST; Haah, J.; Kastoryano, MJ; Kim, IH, Limits on the storage of quantum information in a volume of space, Quantum, 1, 4 (2017) · doi:10.22331/q-2017-04-25-4
[62] B. Schumacher and M.A. Nielsen, Quantum data processing and error correction, Phys. Rev. A54 (1996) 2629 [quant-ph/9604022] [INSPIRE].
[63] T. Farrelly, R.J. Harris, N.A. McMahon and T.M. Stace, Tensor-network codes, arXiv:2009.10329 [INSPIRE].
[64] Pastawski, F.; Preskill, J., Code properties from holographic geometries, Phys. Rev. X, 7, 021022 (2017)
[65] Bao, N.; Cao, C.; Carroll, SM; Chatwin-Davies, A., De Sitter space as a tensor network: cosmic no-hair, complementarity, and complexity, Phys. Rev. D, 96, 123536 (2017) · doi:10.1103/PhysRevD.96.123536
[66] Bao, N.; Cheng, N.; Hernández-Cuenca, S.; Su, VP, The quantum entropy cone of hypergraphs, SciPost Phys., 9, 067 (2020) · doi:10.21468/SciPostPhys.9.5.067
[67] Engelhardt, N.; Wall, AC, Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime, JHEP, 01, 073 (2015) · doi:10.1007/JHEP01(2015)073
[68] Hayden, P.; Penington, G., Approximate quantum error correction revisited: introducing the alpha-bit, Commun. Math. Phys., 374, 369 (2020) · Zbl 1508.81294 · doi:10.1007/s00220-020-03689-1
[69] Akers, C.; Leichenauer, S.; Levine, A., Large breakdowns of entanglement wedge reconstruction, Phys. Rev. D, 100, 126006 (2019) · doi:10.1103/PhysRevD.100.126006
[70] E. Gesteau and M.J. Kang, The infinite-dimensional HaPPY code: entanglement wedge reconstruction and dynamics, arXiv:2005.05971 [INSPIRE].
[71] A. Jahn, Z. Zimborás and J. Eisert, Tensor network models of AdS/qCFT, arXiv:2004.04173 [INSPIRE].
[72] Evenbly, G., Hyperinvariant tensor networks and holography, Phys. Rev. Lett., 119, 141602 (2017) · doi:10.1103/PhysRevLett.119.141602
[73] C. Cao, J. Pollack and Y. Wang, Hyper-invariant MERA: approximate holographic error correction codes with power-law correlations, arXiv:2103.08631 [INSPIRE].
[74] Dong, X., The gravity dual of renyi entropy, Nature Commun., 7, 12472 (2016) · doi:10.1038/ncomms12472
[75] A. Milekhin, Quantum error correction and large N, arXiv:2008.12869 [INSPIRE].
[76] Akers, C.; Rath, P., Entanglement wedge cross sections require tripartite entanglement, JHEP, 04, 208 (2020) · Zbl 1436.81108 · doi:10.1007/JHEP04(2020)208
[77] Takayanagi, T.; Umemoto, K., Entanglement of purification through holographic duality, Nature Phys., 14, 573 (2018) · doi:10.1038/s41567-018-0075-2
[78] Nguyen, P.; Devakul, T.; Halbasch, MG; Zaletel, MP; Swingle, B., Entanglement of purification: from spin chains to holography, JHEP, 01, 098 (2018) · Zbl 1384.81117 · doi:10.1007/JHEP01(2018)098
[79] Dutta, S.; Faulkner, T., A canonical purification for the entanglement wedge cross-section, JHEP, 03, 178 (2021) · Zbl 1461.81104 · doi:10.1007/JHEP03(2021)178
[80] Hayden, P.; Headrick, M.; Maloney, A., Holographic mutual information is monogamous, Phys. Rev. D, 87, 046003 (2013) · doi:10.1103/PhysRevD.87.046003
[81] Bao, N.; Nezami, S.; Ooguri, H.; Stoica, B.; Sully, J.; Walter, M., The holographic entropy cone, JHEP, 09, 130 (2015) · Zbl 1388.83177 · doi:10.1007/JHEP09(2015)130
[82] Jacobson, T., Entanglement equilibrium and the Einstein equation, Phys. Rev. Lett., 116, 201101 (2016) · doi:10.1103/PhysRevLett.116.201101
[83] Czech, B.; Lamprou, L.; McCandlish, S.; Mosk, B.; Sully, J., Equivalent equations of motion for gravity and entropy, JHEP, 02, 004 (2017) · Zbl 1377.83009 · doi:10.1007/JHEP02(2017)004
[84] Giddings, SB, Quantum gravity: a quantum-first approach, LHEP, 1, 1 (2018) · doi:10.31526/LHEP.3.2018.01
[85] White, CD; Cao, C.; Swingle, B., Conformal field theories are magical, Phys. Rev. B, 103, 075145 (2021) · doi:10.1103/PhysRevB.103.075145
[86] Ghosh, S.; Soni, RM; Trivedi, SP, On the entanglement entropy for gauge theories, JHEP, 09, 069 (2015) · Zbl 1388.81438 · doi:10.1007/JHEP09(2015)069
[87] Casini, H.; Huerta, M.; Rosabal, JA, Remarks on entanglement entropy for gauge fields, Phys. Rev. D, 89, 085012 (2014) · doi:10.1103/PhysRevD.89.085012
[88] Mintun, E.; Polchinski, J.; Rosenhaus, V., Bulk-boundary duality, gauge invariance, and quantum error corrections, Phys. Rev. Lett., 115, 151601 (2015) · doi:10.1103/PhysRevLett.115.151601
[89] D. Gottesman, A. Kitaev and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A64 (2001) 012310 [quant-ph/0008040] [INSPIRE].
[90] Woods, MP; Alhambra, AM, Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames, Quantum, 4, 245 (2020) · doi:10.22331/q-2020-03-23-245
[91] Kubica, A.; Demkowicz-Dobrzański, RL, Using quantum metrological bounds in quantum error correction: a simple proof of the approximate Eastin-Knill theorem, Phys. Rev. Lett., 126, 150503 (2021) · doi:10.1103/PhysRevLett.126.150503
[92] Hayden, P.; Nezami, S.; Popescu, S.; Salton, G., Error correction of quantum reference frame information, P. R. X. Quantum., 2, 010326 (2021) · doi:10.1103/PRXQuantum.2.010326
[93] Ferris, AJ; Poulin, D., Tensor networks and quantum error correction, Phys. Rev. Lett., 113, 030501 (2014) · doi:10.1103/PhysRevLett.113.030501
[94] Harris, RJ; McMahon, NA; Brennen, GK; Stace, TM, Calderbank-Shor-Steane holographic quantum error-correcting codes, Phys. Rev. A, 98, 052301 (2018) · doi:10.1103/PhysRevA.98.052301
[95] R.J. Harris, E. Coupe, N.A. McMahon, G.K. Brennen and T.M. Stace, Maximum likelihood decoder for holographic codes, arXiv:2008.10206.
[96] T. Camara, H. Ollivier and J.P. Tillich, Constructions and performance of classes of quantum LDPC codes, quant-ph/0502086.
[97] T.C. Bohdanowicz, E. Crosson, C. Nirkhe and H. Yuen, Good approximate quantum LDPC codes from spacetime circuit Hamiltonians, arXiv:1811.00277. · Zbl 1436.81029
[98] O. Fawzi, A. Grospellier and A. Leverrier, Constant overhead quantum fault-tolerance with quantum expander codes, arXiv:1808.03821. · Zbl 1428.81065
[99] M. Ohya and D. Petz, Quantum entropy and its use, Texts and monographs in physics, Springer, Germany (1993). · Zbl 0891.94008
[100] Junge, M.; Renner, R.; Sutter, D.; Wilde, MM; Winter, A., Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy, Annales Henri Poincaré, 19, 2955 (2018) · Zbl 1401.81025 · doi:10.1007/s00023-018-0716-0
[101] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest and H.-J. Briegel, Entanglement in graph states and its applications, quant-ph/0602096.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.