×

A generalized momentum/complexity correspondence. (English) Zbl 1462.83004

Summary: Holographic complexity, in the guise of the Complexity = Volume prescription, comes equipped with a natural correspondence between its rate of growth and the average infall momentum of matter in the bulk. This Momentum/Complexity correspondence can be related to an integrated version of the momentum constraint of general relativity. In this paper we propose a generalization, using the full Codazzi equations as a starting point, which successfully accounts for purely gravitational contributions to infall momentum. The proposed formula is explicitly checked in an exact pp-wave solution of the vacuum Einstein equations.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C35 Gravitational waves
83E05 Geometrodynamics and the holographic principle
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)

References:

[1] Susskind, L., The World as a hologram, J. Math. Phys., 36, 6377 (1995) · Zbl 0850.00013 · doi:10.1063/1.531249
[2] Verlinde, EP, On the Origin of Gravity and the Laws of Newton, JHEP, 04, 029 (2011) · Zbl 1260.81284 · doi:10.1007/JHEP04(2011)029
[3] L. Susskind, Why do Things Fall?, arXiv:1802.01198 [INSPIRE].
[4] Brown, AR; Gharibyan, H.; Streicher, A.; Susskind, L.; Thorlacius, L.; Zhao, Y., Falling Toward Charged Black Holes, Phys. Rev. D, 98, 126016 (2018) · doi:10.1103/PhysRevD.98.126016
[5] Susskind, L., Complexity and Newton’s Laws, Front. in Phys., 8, 262 (2020) · doi:10.3389/fphy.2020.00262
[6] Magán, JM, Black holes, complexity and quantum chaos, JHEP, 09, 043 (2018) · Zbl 1398.83052 · doi:10.1007/JHEP09(2018)043
[7] Lin, HW; Maldacena, J.; Zhao, Y., Symmetries Near the Horizon, JHEP, 08, 049 (2019) · Zbl 1421.81121 · doi:10.1007/JHEP08(2019)049
[8] A. Mousatov, Operator Size for Holographic Field Theories, arXiv:1911.05089 [INSPIRE].
[9] Barbón, JLF; Martín-García, J.; Sasieta, M., Momentum/Complexity Duality and the Black Hole Interior, JHEP, 07, 169 (2020) · Zbl 1451.83034 · doi:10.1007/JHEP07(2020)169
[10] Barbón, JLF; Martin-Garcia, J.; Sasieta, M., Proof of a Momentum/Complexity Correspondence, Phys. Rev. D, 102, 101901 (2020) · doi:10.1103/PhysRevD.102.101901
[11] Susskind, L.; Zhao, Y., Complexity and Momentum, JHEP, 03, 239 (2020) · Zbl 1461.83021
[12] S. Chapman, H. Marrochio and R. C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP06 (2018) 046 [arXiv:1804.07410] [INSPIRE]. · Zbl 1395.83042
[13] S. Chapman, H. Marrochio and R. C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP06 (2018) 114 [arXiv:1805.07262] [INSPIRE]. · Zbl 1395.83042
[14] L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823 [INSPIRE].
[15] Susskind, L., Entanglement is not enough, Fortsch. Phys., 64, 49 (2016) · Zbl 1429.81021 · doi:10.1002/prop.201500095
[16] L. Susskind, Three Lectures on Complexity and Black Holes, SpringerBriefs in Physics, Springer, (2018), DOI [arXiv:1810.11563] [INSPIRE]. · Zbl 1435.83004
[17] Stanford, D.; Susskind, L., Complexity and Shock Wave Geometries, Phys. Rev. D, 90, 126007 (2014) · doi:10.1103/PhysRevD.90.126007
[18] Roberts, DA; Stanford, D.; Susskind, L., Localized shocks, JHEP, 03, 051 (2015) · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[19] Couch, J.; Eccles, S.; Jacobson, T.; Nguyen, P., Holographic Complexity and Volume, JHEP, 11, 044 (2018) · Zbl 1404.83044 · doi:10.1007/JHEP11(2018)044
[20] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, Cambridge University Press (2009), [DOI] [INSPIRE].
[21] C. W. Misner, K. Thorne and J. Wheeler, Gravitation, W.H. Freeman, San Francisco U.S.A. (1973).
[22] H. Bondi, F. Pirani and I. Robinson, Gravitational waves in general relativity III. Exact plane waves, Proc. Roy. Soc. Lond. A251 (1959) 519. · Zbl 0084.44002
[23] J. Ehlers and W. Kundt, Exact solutions of the Gravitational Field Equations, in L. Witten ed., Gravitation: An Introduction to Current Research, John Wiley & Sons Inc., London U.K. (1962), pp. 49-101.
[24] A. Einstein, Der energiesatz in der allgemeinen relativitätstheorie, in Albert Einstein: Akademie-Vorträge: Sitzungsberichte der Preußischen Akademie der Wissenschaften 1914-19321 (2006) 154. · JFM 46.1296.01
[25] L. Landau and E. Lifschitz, Course of Theoretical Physics. Volume II: The Classical Theory of Fields, Pergamon Press, Oxford U.K. (1975).
[26] Abbott, LF; Deser, S., Stability of Gravity with a Cosmological Constant, Nucl. Phys. B, 195, 76 (1982) · Zbl 0900.53033 · doi:10.1016/0550-3213(82)90049-9
[27] M. A. G. Bonilla and J. Senovilla, M. M., Some Properties of the Bel and Bel-Robinson Tensors, Gen. Rel. Grav.29 (1997) 91 [INSPIRE]. · Zbl 0873.53068
[28] Senovilla, JMM, Superenergy tensors, Class. Quant. Grav., 17, 2799 (2000) · Zbl 1040.83015 · doi:10.1088/0264-9381/17/14/313
[29] Bonilla, MAG; Senovilla, JMM, Very Simple Proof of the Causal Propagation of Gravity in Vacuum, Phys. Rev. Lett., 78, 783 (1997) · doi:10.1103/PhysRevLett.78.783
[30] Barbón, JLF; Rabinovici, E., Holographic complexity and spacetime singularities, JHEP, 01, 084 (2016) · Zbl 1388.83543 · doi:10.1007/JHEP01(2016)084
[31] Brown, JD; Henneaux, M., Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys., 104, 207 (1986) · Zbl 0584.53039 · doi:10.1007/BF01211590
[32] Caputa, P.; Magan, JM, Quantum Computation as Gravity, Phys. Rev. Lett., 122, 231302 (2019) · doi:10.1103/PhysRevLett.122.231302
[33] Belin, A.; Lewkowycz, A.; Sárosi, G., Complexity and the bulk volume, a new York time story, JHEP, 03, 044 (2019) · Zbl 1414.81191 · doi:10.1007/JHEP03(2019)044
[34] Flory, M.; Miekley, N., Complexity change under conformal transformations in AdS_3/CFT_2, JHEP, 05, 003 (2019) · Zbl 1416.81153 · doi:10.1007/JHEP05(2019)003
[35] Brown, AR; Roberts, DA; Susskind, L.; Swingle, B.; Zhao, Y., Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett., 116, 191301 (2016) · doi:10.1103/PhysRevLett.116.191301
[36] Brown, AR; Roberts, DA; Susskind, L.; Swingle, B.; Zhao, Y., Complexity, action, and black holes, Phys. Rev. D, 93, 086006 (2016) · doi:10.1103/PhysRevD.93.086006
[37] Lehner, L.; Myers, RC; Poisson, E.; Sorkin, RD, Gravitational action with null boundaries, Phys. Rev. D, 94, 084046 (2016) · doi:10.1103/PhysRevD.94.084046
[38] Couch, J.; Fischler, W.; Nguyen, PH, Noether charge, black hole volume, and complexity, JHEP, 03, 119 (2017) · Zbl 1377.83039 · doi:10.1007/JHEP03(2017)119
[39] Caputa, P.; Kundu, N.; Miyaji, M.; Takayanagi, T.; Watanabe, K., Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett., 119, 071602 (2017) · doi:10.1103/PhysRevLett.119.071602
[40] Parker, DE; Cao, X.; Avdoshkin, A.; Scaffidi, T.; Altman, E., A Universal Operator Growth Hypothesis, Phys. Rev. X, 9, 041017 (2019)
[41] Barbón, JLF; Rabinovici, E.; Shir, R.; Sinha, R., On The Evolution Of Operator Complexity Beyond Scrambling, JHEP, 10, 264 (2019) · Zbl 1427.81114 · doi:10.1007/JHEP10(2019)264
[42] E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, Operator complexity: a journey to the edge of Krylov space, arXiv:2009.01862 [INSPIRE].
[43] Jian, S-K; Swingle, B.; Xian, Z-Y, Complexity growth of operators in the SYK model and in JT gravity, JHEP, 03, 014 (2021) · Zbl 1461.83044 · doi:10.1007/JHEP03(2021)014
[44] Bernamonti, A.; Galli, F.; Hernandez, J.; Myers, RC; Ruan, S-M; Simón, J., First Law of Holographic Complexity, Phys. Rev. Lett., 123, 081601 (2019) · doi:10.1103/PhysRevLett.123.081601
[45] A. Bernamonti, F. Galli, J. Hernandez, R. C. Myers, S.-M. Ruan and J. Simón, Aspects of The First Law of Complexity, arXiv:2002.05779 [INSPIRE].
[46] Brown, AR; Susskind, L., Second law of quantum complexity, Phys. Rev. D, 97, 086015 (2018) · doi:10.1103/PhysRevD.97.086015
[47] Jeffreys, H., On isotropic tensors, Math. Proc. Cambridge Phil. Soc., 73, 173 (1973) · Zbl 0247.15019 · doi:10.1017/S0305004100047587
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.