×

Complete classification of rational solutions of \(A_{2n}\)-Painlevé systems. (English) Zbl 1472.37067

The authors provide a complete classification of the rational solutions of the Painlevé IV equation and its higher-order hierarchy, known as the \(A_{2n}\)-Painlevé or Noumi-Yamada system. First, they recall the equivalence between the Noumi-Yamada system and a cyclic dressing chain of Schrödinger operators. Then, they show by a careful investigation of the local expansions of the rational solutions around their poles, that the solutions have trivial monodromy, and therefore they must be expressible in terms of Wronskian determinants whose entries are Hermite polynomials.
Next, they use Maya diagrams to classify all the \( (2n + 1)\)-cyclic dressing chains and therefore achieve a complete classification. Finally, they connect their results with the geometric approach mastered by the Japanese school, showing a representation for the action of the symmetry group of Bäcklund transformations in terms of Maya cycles and oddly colored integer sequences. The natural extension of this work is to tackle the full classification of the rational solutions to the \(A_{2n+1}\)-Painlevé systems, which include the Painlevé V and its higher order extensions.
This is a very significative work in the study of the solutions of Painlevé IV equation.

MSC:

37J65 Nonautonomous Hamiltonian dynamical systems (Painlevé equations, etc.)
34M05 Entire and meromorphic solutions to ordinary differential equations in the complex domain
34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies

References:

[1] Adler, V.È., Recuttings of polygons, Funct. Anal. Appl., 27, 141-143 (1993) · Zbl 0812.58072
[2] Adler, V.È., A modification of Crum’s method, Theor. Math. Phys., 101, 3, 1381-1386 (1994) · Zbl 0857.34069
[3] Adler, V.È., Nonlinear chains and Painlevé equations, Physica D, 73, 4, 335-351 (1994) · Zbl 0812.34030
[4] Alladi, K., A Fundamental Invariant in the Theory of Partitions, Topics in Number Theory, 101-113 (1999), Springer · Zbl 0946.11023
[5] Andrews, G. E., The Theory of Partitions (1998), Cambridge University Press: Cambridge University Press Cambridge, MR 1634067 · Zbl 0996.11002
[6] Andrews, G. E.; Eriksson, K., Integer Partitions (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1073.11063
[7] Bermúdez, D., Complex SUSY transformations and the Painlevé IV equation, SIGMA, 8, Article 069 pp. (2012) · Zbl 1269.81055
[8] Bermúdez, D.; Fernández C, D. J., Supersymmetric quantum mechanics and Painlevé IV equation, SIGMA, 7, Article 025 pp. (2011) · Zbl 1217.81098
[9] Buckingham, R., Large-degree asymptotics of rational Painlevé-IV functions associated to generalized Hermite polynomials, Int. Math. Res. Not., 2020, 18, 5534-5577 (2020) · Zbl 1458.35137
[10] Buckingham, R. J.; Miller, P. D., Large-degree asymptotics of rational Painlevé-IV solutions by the isomonodromy method (2020)
[11] Bureau, F. J., Differential equations with fixed critical points, (Painlevé Transcendents (1992), Springer: Springer Boston, MA), 103-123 · Zbl 0856.34005
[12] Chen, Y.; Feigin, M. V., Painlevé IV and degenerate Gaussian unitary ensembles, J. Phys. A, Math. Gen., 39, 40, Article 12381 pp. (2006) · Zbl 1108.15023
[13] Clarkson, P. A., Painlevé equations — nonlinear special functions, J. Comput. Appl. Math., 153, 1-2, 127-140 (2003) · Zbl 1035.34101
[14] Clarkson, P. A., The fourth Painlevé equation and associated special polynomials, J. Math. Phys., 44, 11, 5350-5374 (2003) · Zbl 1063.33029
[15] Clarkson, P. A., Special polynomials associated with rational solutions of the defocusing nonlinear Schrödinger equation and the fourth Painlevé equation, Eur. J. Appl. Math., 17, 3, 293-322 (2006) · Zbl 1126.35062
[16] Clarkson, P. A., Vortices and polynomials, Stud. Appl. Math., 123, 1, 37-62 (2009) · Zbl 1372.37110
[17] Clarkson, P. A.; Gómez-Ullate, D.; Grandati, Y.; Milson, R., Cyclic Maya diagrams and rational solutions of higher order Painlevé systems, Stud. Appl. Math., 144, 3, 357-385 (2020) · Zbl 1441.81084
[18] Clarkson, P. A.; Jordaan, K., The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation, Constr. Approx., 39, 1, 223-254 (2014) · Zbl 1321.34115
[19] Crum, M. M., Associated Sturm-Liouville systems, Q. J. Math. Oxford Ser., 6, 121-127 (1955) · Zbl 0065.31901
[20] Darboux, G., On a proposition relative to linear equations, C. R. Acad. Sci. Paris, 94, 1456-1459 (1882) · JFM 14.0264.01
[21] Duistermaat, J. J.; Grünbaum, F. A., Differential equations in the spectral parameter, Commun. Math. Phys., 103, 2, 177-240 (1986) · Zbl 0625.34007
[22] Erdélyi, A., Higher Transcendental Functions, vol. 1 (1953), McGraw-Hill: McGraw-Hill New York · Zbl 0051.30303
[23] Euler, N.; Nucci, M. C., Nonlinear Systems and Their Remarkable Mathematical Structures, vol. 2 (2019), CRC Press · Zbl 1409.37001
[24] Filipuk, G.; Clarkson, P. A., The symmetric fourth Painlevé hierarchy and associated special polynomials, Stud. Appl. Math., 121, 2, 157-188 (2008) · Zbl 1202.34155
[25] Fokas, A. S.; Its, A. R.; Kapaev, A. A.; Novokshenov, V. Yu., Painlevé Transcendents. The Riemann-Hilbert Approach, Mathematical Surveys and Monographs, vol. 128 (2006), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1111.34001
[26] Forrester, P. J.; Witte, N. S., Application of the τ-function theory of Painlevé equations to random matrices: PIV, PII and the GUE, Commun. Math. Phys., 219, 2, 357-398 (2001) · Zbl 1042.82019
[27] Fukutani, S.; Okamoto, K.; Umemura, H., Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations, Nagoya Math. J., 159, 179-200 (2000) · Zbl 0972.34077
[28] García-Ferrero, MÁ.; Gómez-Ullate, D., Oscillation theorems for the Wronskian of an arbitrary sequence of eigenfunctions of Schrödinger’s equation, Lett. Math. Phys., 105, 4, 551-573 (2015) · Zbl 1328.34030
[29] García-Ferrero, M.Á.; Gómez-Ullate, D.; Milson, R., A Bochner type characterization theorem for exceptional orthogonal polynomials, J. Math. Anal. Appl., 472, 1, 584-626 (2019) · Zbl 1421.42014
[30] García-Ferrero, M.Á.; Gómez-Ullate, D.; Milson, R., Exceptional Legendre polynomials and confluent Darboux transformations, SIGMA, 17, 16-35 (2021) · Zbl 1466.33006
[31] Gomez-Ullate, D.; Grandati, Y.; McIntyre, Z.; Milson, R., Ladder operators and rational extensions, (Paranjape, M. B.; etal., Quantum Theory and Symmetries. Quantum Theory and Symmetries, CRM Series in Mathematical Physics (March 2021), Springer)
[32] Gómez-Ullate, D.; Grandati, Y.; Milson, R., Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials, J. Phys. A, 47, 1, Article 015203 pp. (2013) · Zbl 1283.81059
[33] Gómez-Ullate, D.; Grandati, Y.; Milson, R., Durfee rectangles and pseudo-Wronskian equivalences for Hermite polynomials, Stud. Appl. Math., 141, 4, 596-625 (2018) · Zbl 1408.33021
[34] Gómez-Ullate, D.; Grandati, Y.; Milson, R., Corrigendum on the proof of completeness for exceptional Hermite polynomials, J. Approx. Theory, Article 105350 pp. (2019) · Zbl 1441.81087
[35] Gómez-Ullate, D.; Kamran, N.; Milson, R., A conjecture on exceptional orthogonal polynomials, Found. Comput. Math., 13, 4, 615-666 (2013) · Zbl 1282.33019
[36] Gromak, V. I.; Laine, I.; Shimomura, S., Painlevé Differential Equations in the Complex Plane, vol. 28 (2008), Walter de Gruyter
[37] Infeld, L.; Hull, T. E., The factorization method, Rev. Mod. Phys., 23, 21-68 (1951) · Zbl 0043.38602
[38] Joshi, N.; Kitaev, A. V.; Treharne, P. A., On the linearization of the first and second Painlevé equations, J. Phys. A, 42, Article 055208 pp. (2009) · Zbl 1162.34073
[39] Kajiwara, K.; Ohta, Y., Determinant structure of the rational solutions for the Painlevé IV equation, J. Phys. A, 31, 10, 2431 (1998) · Zbl 0919.34008
[40] Kitaev, A. V.; Law, C. K.; McLeod, J. B., Rational solutions of the fifth Painlevé equation, Differ. Integral Equ., 7, 3-4, 967-1000 (1994) · Zbl 0804.34006
[41] Krein, M. G., A continual analogue of a Christoffel formula from the theory of orthogonal polynomials, Dokl. Akad. Nauk SSSR, 113, 5, 970-973 (1957) · Zbl 0151.11202
[42] Lisovyy, O.; Tykhyy, Y., Algebraic solutions of the sixth Painlevé equation, J. Geom. Phys., 85, 124-163 (2014) · Zbl 1307.34135
[43] Lukashevich, N. A., Theory of the fourth Painlevé equation, Differ. Equ., 3, 395-399 (1967) · Zbl 0225.34001
[44] Marquette, I.; Quesne, C., Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial, J. Math. Phys., 57, 5, Article 052101 pp. (2016) · Zbl 1375.81100
[45] Masoero, D.; Roffelsen, P., Poles of Painlevé IV rationals and their distribution, SIGMA, 14, Article 002 pp. (2018) · Zbl 1393.34082
[46] Masoero, D..; Roffelsen, P., Roots of generalised Hermite polynomials when both parameters are large (2019), arXiv preprint · Zbl 1460.33012
[47] Matsuda, K., Rational solutions of the Noumi and Yamada system of type \(A_4^{( 1 )}\), J. Math. Phys., 53, 2, Article 023504 pp. (2012) · Zbl 1274.37038
[48] Murata, Y., Rational solutions of the second and the fourth Painlevé equations, Funkc. Ekvacioj, 28, 1-32 (1985) · Zbl 0597.34004
[49] Noumi, M., Painlevé Equations Through Symmetry, vol. 223 (2004), Springer Science & Business · Zbl 1077.34003
[50] Noumi, M.; Yamada, Y., Higher order Painleve equations of type \(A_\ell^{( 1 )}\), Funkc. Ekvacioj, 41, 483-503 (1998) · Zbl 1140.34303
[51] Noumi, M.; Yamada, Y., Symmetries in the fourth Painlevé equation and Okamoto polynomials, Nagoya Math. J., 153, 53-86 (1999) · Zbl 0932.34088
[52] Novokshenov, V. Yu., Generalized Hermite polynomials and monodromy-free Schrödinger operators, SIGMA, 14, Article 106 pp. (2018) · Zbl 1403.35091
[53] Oblomkov, A. A., Monodromy-free Schrödinger operators with quadratically increasing potentials, Theor. Math. Phys., 121, 3, 1574-1584 (1999) · Zbl 0978.34077
[54] Okamoto, K., Studies on the Painlevé equations. III. Second and fourth Painlevé equations, \( P_{\operatorname{II}}\) and \(P_{\operatorname{IV}} \), Math. Ann., 275, 2, 221-255 (1986) · Zbl 0589.58008
[55] Olsson, J. B., Combinatorics and Representations of Finite Groups, Fachbereich Mathematik, vol. 20 (1994), Universität Essen
[56] Saito, K., Extended affine root systems I (Coxeter transformations), Publ. Res. Inst. Math. Sci., 21, 75-179 (1985) · Zbl 0573.17012
[57] Schrödinger, E., A method of determining quantum-mechanical eigenvalues and eigenfunctions, Proc. R. Ir. Acad. A, 46, 9-16 (1940) · Zbl 0023.08602
[58] Tsuda, T., Universal characters and an extension of the KP hierarchy, Commun. Math. Phys., 248, 3, 501-526 (2004) · Zbl 1233.37042
[59] Tsuda, T., Universal characters, integrable chains and the Painlevé equations, Adv. Math., 197, 2, 587-606 (2005) · Zbl 1095.34057
[60] Tsuda, T., From KP/UC hierarchies to Painlevé equations, Int. J. Math., 23, 05, Article 1250010 pp. (2012) · Zbl 1248.34138
[61] Van Assche, W., Orthogonal Polynomials and Painlevé Equations, Australian Mathematical Society Lecture Series, vol. 27 (2018), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1387.33001
[62] Veselov, A. P., On Stieltjes relations, Painlevé-IV hierarchy and complex monodromy, J. Phys. A, 34, 16, 3511-3519 (2001) · Zbl 1045.34060
[63] Veselov, A. P.; Shabat, A. B., Dressing chains and the spectral theory of the Schrödinger operator, Funct. Anal. Appl., 27, 2, 81-96 (1993) · Zbl 0813.35099
[64] Willox, R.; Hietarinta, J., Painlevé equations from Darboux chains. I. \( P_{\operatorname{III}}- P_{\operatorname{V}} \), J. Phys. A, 36, 42, 10615-10635 (2003) · Zbl 1050.34129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.