×

The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation. (English) Zbl 1321.34115

The authors discuss the relationship between the theory of fourth Painlevé equation \[ \frac{{{d}^{2}}q}{d{{z}^{2}}}=\frac{1}{2q}{{\left( \frac{dq}{dz} \right)}^{2}}+\frac{3}{2}{{q}^{3}}+4z{{q}^{2}}+2({{z}^{2}}-A)q+\frac{B}{q} \tag{1} \] and the theory of orthogonal polynomials with respect to a semiclassical Laguerre weight \[ \omega (x;t)={{x}^{\lambda }}\exp (-{{x}^{2}}+tx),x\in \mathbb{R}. \] For quite a wide variety of parameters the solutions of equation (1) lie in the Picard-Vessiot extension of the field \(\mathbb{C}(z)\) and can be expressed in terms of classical special functions. The semiclassical orthogonal polynomials satisfy a three-term recurrence relationship of the form \[ x{{P}_{n}}(x;t)={{P}_{n+1}}(x;t)+{{\alpha }_{n}}(t){{P}_{n}}(x;t)+{{\beta }_{n}}(t){{P}_{n-1}}(x;t), \tag{2} \] where the coefficients \({\alpha _n}(t)\) and \({\beta _n}(t)\) also can be expressed in terms of classical special functions. This allows the authors to obtain an expression for the coefficients of relation (2) through solutions of the Painlevé equation \[ \begin{aligned} &{\alpha }_{n}(t)=\frac{1}{2}{{q}_{n}}(t)+\frac{1}{2}t, \\ &{\beta }_{n}(t)=-\frac{1}{8}\frac{d{{q}_{n}}}{dt}-\frac{1}{8}q_{n}^{2}-\frac{1}{4}t{{q}_{n}}+\frac{1}{4}\lambda +\frac{1}{2}, \end{aligned} \] where \({{q}_{n}}(z)\) is a solution of equation (1) with parameters \((A,B)=(2n+\lambda +1,-2{{\lambda }^{2}})\).

MSC:

34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
33E17 Painlevé-type functions
33C47 Other special orthogonal polynomials and functions
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)

Software:

DLMF

References:

[1] Álvarez-Nodarse, R.: On characterizations of classical polynomials. J. Comput. Appl. Math. 196, 320-337 (2006) · Zbl 1108.33008 · doi:10.1016/j.cam.2005.06.046
[2] Basor, E., Chen, Y.: Painlevé V and the distribution function of a discontinuous linear statistic in the Laguerre unitary ensembles. J. Phys. A 42, 035203 (2009) · Zbl 1161.81014 · doi:10.1088/1751-8113/42/3/035203
[3] Basor, E., Chen, Y., Ehrhardt, T.: Painlevé V and time-dependent Jacobi polynomials. J. Phys. A 43, 015204 (2010) · Zbl 1202.33030 · doi:10.1088/1751-8113/43/1/015204
[4] Basor, E., Chen, Y., McKay, M.R.: Perturbed Laguerre unitary ensembles, Painlevé V and information theory (2013). arXiv:1303.0773 [math-ph] · Zbl 0972.81634
[5] Basor, E., Chen, Y., Mekareeya, N.: The Hilbert series of \(\mathcal{N} =1\) SO(Nc) and Sp(Nc) SQCD, Painlevé VI and integrable systems. Nucl. Phys. B 860, 421-463 (2012) · Zbl 1246.81419 · doi:10.1016/j.nuclphysb.2012.02.018
[6] Bassom, A.P., Clarkson, P.A., Hicks, A.C.: Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math. 95, 1-71 (1995) · Zbl 0846.34006
[7] Bochner, S., Über Sturm-Liouvillesche Polynomsysteme. Math. Z. 29, 730-736 (1929) · JFM 55.0260.01 · doi:10.1007/BF01180560
[8] Boelen, L., Filipuk, G., van Assche, W.: Recurrence coefficients of generalized Meixner polynomials and Painlevé equations. J. Phys. A 44, 035202 (2011) · Zbl 1217.34135 · doi:10.1088/1751-8113/44/3/035202
[9] Boelen, L., Filipuk, G., Smet, C., Van Assche, W., Zhang, L.: The generalized Krawtchouk polynomials and the fifth Painlevé equation. J. Differ. Equ. Appl. (2013). doi:10.1080/10236198.2012.755522 · Zbl 1279.33013 · doi:10.1080/10236198.2012.755522
[10] Boelen, L., van Assche, W.: Discrete Painlevé equations for recurrence relations of semiclassical Laguerre polynomials. Proc. Am. Math. Soc. 138, 1317-1331 (2011) · Zbl 1187.39012 · doi:10.1090/S0002-9939-09-10152-1
[11] Bonan, S., Nevai, P.: Theory orthogonal polynomials and their derivatives. I. J. Approx. Theory 40, 134-147 (1984) · Zbl 0533.42015 · doi:10.1016/0021-9045(84)90023-6
[12] Bureau, F.: Differential equations with fixed critical points. Ann. Mat. 66, 1-116 (1964). 229-364 · Zbl 0129.06101 · doi:10.1007/BF02412437
[13] Bureau, F.: Équations différentielles du second ordre en Y et du second degré en \(\ddot{Y}\) dont l’intégrale générale est à points critiques. Ann. Mat. 91, 163-281 (1972) · Zbl 0276.34027 · doi:10.1007/BF02428819
[14] Chazy, J.: Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes. Acta Math. 34, 317-385 (1911) · JFM 42.0340.03 · doi:10.1007/BF02393131
[15] Chen, Y., Dai, D.: Painlevé V and a Pollaczek-Jacobi type orthogonal polynomials. J. Approx. Theory 162, 2149-2167 (2010) · Zbl 1221.33015 · doi:10.1016/j.jat.2010.07.005
[16] Chen, Y., Ismail, M.: Thermodynamic relations of the Hermitian matrix ensembles. J. Phys. A 30, 6633-6654 (1997) · Zbl 1042.82550 · doi:10.1088/0305-4470/30/19/006
[17] Chen, Y., Ismail, M., van Assche, W.: Tau-function constructions of the recurrence coefficients of orthogonal polynomials. Adv. Appl. Math. 20, 141-168 (1998) · Zbl 0930.42012 · doi:10.1006/aama.1997.0574
[18] Chen, Y., Its, A.: Painlevé III and a singular linear statistics in Hermitian random matrix ensembles. I. J. Approx. Theory 162, 270-297 (2010) · Zbl 1189.33035 · doi:10.1016/j.jat.2009.05.005
[19] Chen, Y., McKay, M.S.: Coulomb fluid, Painlevé transcendent, and the information theory of MIMO systems. IEEE Trans. Inf. Theory 58, 4594-4634 (2012) · Zbl 1365.94138 · doi:10.1109/TIT.2012.2195154
[20] Chen, Y., Zhang, L.: Painlevé VI and the unitary Jacobi ensembles. Stud. Appl. Math. 125, 91-112 (2010) · Zbl 1202.34154
[21] Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978). Reprinted by, Dover Publications, 2011 · Zbl 0389.33008
[22] Clarkson, P. A.; Marcellàn, F. (ed.); Assche, W. (ed.), Painlevé equations—non-linear special functions, No. 1883, 331-411 (2006), Berlin · Zbl 1100.33006 · doi:10.1007/978-3-540-36716-1_7
[23] Clarkson, P.A.: Recurrence coefficients for discrete orthonormal polynomials and the Painlevé equations. J. Phys. A 46, 185205 (2013) · Zbl 1275.34109 · doi:10.1088/1751-8113/46/18/185205
[24] Cosgrove, C.M., Scoufis, G.: Painlevé classification of a class of differential equations of the second order and second-degree. Stud. Appl. Math. 88, 25-87 (1993) · Zbl 0774.34005
[25] Dai, D., Zhang, L.: Painlevé VI and Hankel determinants for the generalized Jacobi weight. J. Phys. A 43, 055207 (2010) · Zbl 1196.33018 · doi:10.1088/1751-8113/43/5/055207
[26] Filipuk, G., van Assche, W.: Recurrence coefficients of a new generalization of the Meixner polynomials. SIGMA 7, 068 (2011) · Zbl 1250.33015
[27] Filipuk, G., van Assche, W.: Recurrence coefficients of generalized Charlier polynomials and the fifth Painlevé equation. Proc. Am. Math. Soc. 141, 551-562 (2013) · Zbl 1269.34095 · doi:10.1090/S0002-9939-2012-11468-6
[28] Filipuk, G., van Assche, W., Zhang, L.: The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation. J. Phys. A 45, 205201 (2012) · Zbl 1253.33012 · doi:10.1088/1751-8113/45/20/205201
[29] Fokas, A.S., Ablowitz, M.J.: On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23, 2033-2042 (1982) · Zbl 0504.34022 · doi:10.1063/1.525260
[30] Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, Yu.V.: Painlevé Transcendents: The Riemann-Hilbert Approach. Math. Surv. Mono., vol. 128. American Mathematical Society, Providence (2006) · Zbl 1111.34001 · doi:10.1090/surv/128
[31] Fokas, A.S., Its, A.R., Kitaev, A.V.: Discrete Painlevé equations and their appearance in quantum-gravity. Commun. Math. Phys. 142, 313-344 (1991) · Zbl 0742.35047 · doi:10.1007/BF02102066
[32] Fokas, A.S., Its, A.R., Kitaev, A.V.: The isomonodromy approach to matrix models in 2D quantum-gravity. Commun. Math. Phys. 147, 395-430 (1992) · Zbl 0760.35051 · doi:10.1007/BF02096594
[33] Fokas, A.S., Mugan, U., Ablowitz, M.J.: A method of linearisation for Painlevé equations: Painlevé IV, v. Physica D 30, 247-283 (1988) · Zbl 0649.34006 · doi:10.1016/0167-2789(88)90021-8
[34] Forrester, P.J.: Log-Gases and Random Matrices. London Math. Soc. Mono. Series, vol. 34. Princeton University Press, Princeton (2010) · Zbl 1217.82003
[35] Forrester, P.J., Ormerod, C.M.: Differential equations for deformed Laguerre polynomials. J. Approx. Theory 162, 653-677 (2010) · Zbl 1200.34112 · doi:10.1016/j.jat.2009.07.010
[36] Forrester, P.J., Witte, N.S.: Application of the τ-function theory of Painlevé equations to random matrices: PIV, PII and the GUE. Commun. Math. Phys. 219, 357-398 (2001) · Zbl 1042.82019 · doi:10.1007/s002200100422
[37] Forrester, P.J., Witte, N.S.: Discrete Painlevé equations and random matrix averages. Nonlinearity 16, 1919-1944 (2003) · Zbl 1071.15026 · doi:10.1088/0951-7715/16/6/303
[38] Forrester, P.J., Witte, N.S.: The distribution of the first eigenvalue spacing at the hard edge of the Laguerre unitary ensemble. Kyushu J. Math. 61, 457-526 (2007) · Zbl 1145.15014 · doi:10.2206/kyushujm.61.457
[39] Freud, G.: On the coefficients in the recursion formulae of orthogonal polynomials. Proc. R. Ir. Acad., Sci. Sect. A 76, 1-6 (1976). · Zbl 0327.33008
[40] Gambier, B.: Sur les équations différentielles du second ordre et du premeir degre dont l’intégrale générale est à points critiques fixés. Acta Math. 33, 1-55 (1909) · JFM 40.0377.02 · doi:10.1007/BF02393211
[41] Gromak, V.I.: Single-parameter systems of solutions of Painlevé’s equations. Differ. Equ. 14, 1510-1513 (1978) · Zbl 0413.34006
[42] Gromak, V.I.: On the theory of the fourth Painlevé equation. Differ. Equ. 23, 506-513 (1987) · Zbl 0647.34004
[43] Gromak, V.I., Laine, I., Shimomura, S.: Painlevé Differential Equations in the Complex Plane. Studies in Math., vol. 28. de Gruyter, Berlin (2002) · Zbl 1043.34100 · doi:10.1515/9783110198096
[44] Gromak, V.I., Lukashevich, N.A.: Special classes of solutions of Painlevé’s equations. Differ. Equ. 18, 317-326 (1982) · Zbl 0526.34002
[45] Hendriksen, E.; Rossum, H.; Brezinski, C. (ed.); Draux, A. (ed.); Magnus, A. P. (ed.); Maroni, P. (ed.); Ronveaux, A. (ed.), Semi-classical orthogonal polynomials, No. 1171, 354-361 (1985), Berlin · Zbl 0587.42017 · doi:10.1007/BFb0076564
[46] Ince, E.L.: Ordinary Differential Equations. Dover, New York (1956) · Zbl 0063.02971
[47] Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and Its Applications, vol. 98. Cambridge University Press, Cambridge (2005) · Zbl 1082.42016 · doi:10.1017/CBO9781107325982
[48] Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painlevé: a Modern Theory of Special Functions. Aspects of Mathematics E, vol. 16. Viewag, Braunschweig (1991) · Zbl 0743.34014 · doi:10.1007/978-3-322-90163-7
[49] Jimbo, M., Miwa, T.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II. Physica D 2, 407-448 (1981) · Zbl 1194.34166 · doi:10.1016/0167-2789(81)90021-X
[50] Kanzieper, E.: Replica field theories, Painlevé transcendents, and exact correlation functions. Phys. Rev. Lett. 89, 250201 (2002) · Zbl 1267.81236 · doi:10.1103/PhysRevLett.89.250201
[51] Lukashevich, N.A.: Elementary solutions of certain Painlevé equations. Differ. Equ. 1, 561-564 (1965) · Zbl 0166.07604
[52] Lukashevich, N.A.: Theory of the fourth Painlevé equation. Differ. Equ. 3, 395-399 (1967) · Zbl 0225.34001
[53] Magnus, A.: Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57, 215-237 (1995) · Zbl 0828.42012 · doi:10.1016/0377-0427(93)E0247-J
[54] Magnus, A.; Clarkson, P. A. (ed.); Nijhoff, F. W. (ed.), Freud’s equations for orthogonal polynomials as discrete Painlevé equations, No. 255, 228-243 (1999), Cambridge · Zbl 0928.42006 · doi:10.1017/CBO9780511569432.019
[55] Maroni, P.: Prolǵomènes à l’étude des polynômes orthogonaux semi-classiques. Ann. Mat. Pura Appl. 149(4), 165-184 (1987) · Zbl 0636.33009 · doi:10.1007/BF01773932
[56] Masuda, T.: Classical transcendental solutions of the Painlevé equations and their degeneration. Tohoku Math. J. 56(2), 467-490 (2004) · Zbl 1087.34063 · doi:10.2748/tmj/1113246745
[57] Moser, J.; Moser, J. (ed.), Finitely many mass points on the line under the influence of an exponential potential—an integrable system, No. 38, 469-497 (1975), Berlin · Zbl 0308.00003 · doi:10.1007/3-540-07171-7
[58] Murata, Y.: Rational solutions of the second and the fourth Painlevé equations. Funkc. Ekvacioj 28, 1-32 (1985) · Zbl 0597.34004
[59] Nakamura, Y., Zhedanov, A.: Special solutions of the Toda chain and combinatorial numbers. J. Phys. A 37, 5849-5862 (2004) · Zbl 1050.37039 · doi:10.1088/0305-4470/37/22/010
[60] Okamoto, K.: Polynomial Hamiltonians associated with Painlevé equations. I. Proc. Jpn. Acad., Ser. A, Math. Sci. 56, 264-268 (1980) · Zbl 0476.34010 · doi:10.3792/pjaa.56.264
[61] Okamoto, K.: Polynomial Hamiltonians associated with Painlevé equations. II. Proc. Jpn. Acad., Ser. A, Math. Sci. 56, 367-371 (1980) · Zbl 0485.34007 · doi:10.3792/pjaa.56.367
[62] Okamoto, K.: Studies on the Painlevé equations III. Second and fourth Painlevé equations, PII and PIV. Math. Ann. 275, 221-255 (1986) · Zbl 0589.58008 · doi:10.1007/BF01458459
[63] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) · Zbl 1198.00002
[64] Osipov, V.Al., Kanzieper, E.: Correlations of RMT characteristic polynomials and integrability: Hermitean matrices. Ann. Phys. 325, 2251-2306 (2010) · Zbl 1245.60009 · doi:10.1016/j.aop.2010.04.005
[65] Peherstorfer, F., Spiridonov, V.P., Zhedanov, A.S.: Toda chain, Stieltjes function and orthogonal polynomials. Theor. Math. Phys. 151, 505-528 (2007) · Zbl 1121.37054 · doi:10.1007/s11232-007-0038-8
[66] Shohat, J.: A differential equation for orthogonal polynomials. Duke Math. J. 5, 401-417 (1939) · JFM 65.0285.03 · doi:10.1215/S0012-7094-39-00534-X
[67] Sogo, K.: Time-dependent orthogonal polynomials and theory of soliton—applications to matrix model, vertex model and level statistics. J. Phys. Soc. Jpn. 62, 1887-1894 (1993) · Zbl 0972.81634 · doi:10.1143/JPSJ.62.1887
[68] Szegö, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23. American Mathematical Society, Providence (1975) · Zbl 0305.42011
[69] Tracy, C.A., Widom, H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163, 33-72 (1994) · Zbl 0813.35110 · doi:10.1007/BF02101734
[70] Umemura, H.: Painlevé equations and classical functions. Sūgaku Expo. 11, 77-100 (1998) · Zbl 1011.34075
[71] Assche, W.; Elaydi, S. (ed.); Cushing, J. (ed.); Lasser, R. (ed.); Papageorgiou, V. (ed.); Ruffing, A. (ed.); Assche, W. (ed.), Discrete Painleve equations for recurrence coefficients of orthogonal polynomials, 687-725 (2007), Hackensack · Zbl 1128.39013 · doi:10.1142/9789812770752_0058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.