×

Mathematics of wavefields. (English) Zbl 1428.35555

Dutta, Hemen (ed.) et al., Applied mathematical analysis: theory, methods, and applications. Cham: Springer. Stud. Syst. Decis. Control 177, 187-231 (2020).
Summary: Wave propagation and scattering occupy a large part of physical, mathematical and engineering sciences. The purpose of this chapter is to present the basic mathematical theory of certain aspects of wavefields, that is, waves and fields, as they occur under various physical situations. These are considered in both scalar or acoustical and vector or electromagnetic media, that is, in the context of Helmholtz’s and Maxwell’s equations. The major emphasis is on the mathematical aspects of Green’s functions, tensors and operators. In particular, the singularities involved are discussed at length. The basic mathematical concepts, tools and techniques, necessary for the presentation, are summarized in the beginning. It is shown that mathematical analyses reveal many subtleties hidden in the wavefields that would otherwise have gone unnoticed. Detailed derivations of the equations are provided whenever possible and necessary. Also, if there are alternative ways of solving a problem, these have been presented. Finally, copious remarks and notes are included for better explaining certain points.
For the entire collection see [Zbl 1417.00004].

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
78A45 Diffraction, scattering
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
76Q05 Hydro- and aero-acoustics
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
35J08 Green’s functions for elliptic equations
26B20 Integral formulas of real functions of several variables (Stokes, Gauss, Green, etc.)
78A25 Electromagnetic theory (general)
Full Text: DOI

References:

[1] Chadan, K., Sabatier, P.C.: Inverse Problems in Quantum Scattering, Springer, New York (1989). See also Ghosh Roy, D.N.: Method of Inverse Problems in Physics and Imaging Sciences. CRC Press, Boca Raton, Fl (1990) · Zbl 0681.35088
[2] Roman, P.: An Advanced Quantum Theory, Pergamon Press, New York · Zbl 0127.18603
[3] Buchanan, J.L., Gilbert, R.P., Wirgin, A., Xu, Y.S.: Marine Acoustics: Direct and Inverse Problems. SIAM, Philadelphia (2004) · Zbl 1055.35134 · doi:10.1137/1.9780898717983
[4] Hansen, T.B., Yaghjian, A.D.: Plane-Wave Theory of Time-Domain Fields. IEEE Press (1999) · Zbl 1008.78501
[5] Chew, W.C.: Waves and Fields in Inhomogeneous Media. IEEE Press, New York (1995) · doi:10.1109/9780470547052
[6] Jones, D.S.: Acoustic and Electromagnetic Waves. Oxford University Press, New York (1986)
[7] Colton, D., Kress, R.: Inverse Acousti and Electromagnetic Scattering Theory. Springer, Berlin (1992) · Zbl 0760.35053 · doi:10.1007/978-3-662-02835-3
[8] Stakgold, I.: Green’s Functions and Boundary Value Problems, 2nd edn. Wiley, New York (1999) · Zbl 0421.34027
[9] Taylor, A.E.: General Theory of Functions and Integration. Dover, New York (1985)
[10] Zorich, V.A.: Mathematical Analysis I and II. Springer, Berlin (2004) · Zbl 1071.00003
[11] Zuily, C.: Problems in Distributions and Partial Differential Equations. North-Holland, Amsterdam (1988) · Zbl 0661.46030
[12] van Kranendonk, J., Sipe, J.E.: Progress in Optics. In: Wolf, E. (ed.) vol. XV, 245, North-Holland, Amsterdam · Zbl 0959.00500
[13] Hanson, G.W., Yakovlev, A.B.: Operator Theory for Electromagnetics. Springer, New York (2002) · Zbl 1024.47001 · doi:10.1007/978-1-4757-3679-3
[14] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover (1973) · Zbl 0171.38503
[15] Fleming, W.H.: Functions of Several Variables. Addison-Wesley, Reading, MA (1965). Also Kaplan, W.: Advanced Calculus. Addison-Wesley, Cambridge, MA (1952) · Zbl 0047.28308
[16] Friedman, B.: Principles and Techniques of Applied Mathematics. John Wiley, New York (1956) · Zbl 0072.12806
[17] Flanders, H.: Differentiation under the integral sign, AMS 80, 617. See also Silberstien, M.: Applications of a generalized Leibnitz rule for calculating electromagnetic fields within continuous source regions. Radio Sci. 26, 183 (1991) · doi:10.1029/89RS03057
[18] Eringen, A.C.: Mechanics of Continua. Wiley, New York (1967) · Zbl 0222.73001
[19] Bonnet, M.: Boundary Integral Equation Methods for Solids and Fluids. John Wiley, Chichester (1995)
[20] Haug, E.J., Choi, K.K., Komkov, V.: Design Sensitivity Analysis of Structured Systems. Academic Press, Orlando (1986) · Zbl 0618.73106
[21] Tai, C.T.: Generalized vector and dyadic analysis. In: Ghosh Roy, D.N., Couchman, L., Shirron, J. (eds.) Inverse Obstacle Transmission Problem in Acoustics, Inverse Problems, 1998, vol. 14, pp. 903. IEEE Press, New York (1997) · Zbl 0886.26002
[22] Dorn, O., Miller, E.L., Rappaport, C.M.: A shape reconstruction method for electromagnetic tomography using adjoint fields and level set. Inverse Prob. 16, 1119-1156 (2000) · Zbl 0983.35150 · doi:10.1088/0266-5611/16/5/303
[23] Norton, S.J.: Iterative inverse scattering algorithms: methods for computing frechet derivative. JASA 106, 2653 (1999) · doi:10.1121/1.428095
[24] Ghosh Roy, D.N., Mudalier, S.: Domain derivatives in dielectric rough surface scattering. IEEE Trans. AP. Also Ghosh Roy, D.N., Couchman, L., Warner, J.: Scattering and inverse scattering via shape deformation. Inverse Probl. 13, 585 (1997) · Zbl 0884.35169
[25] Gel’fund, I.M., Shilov, G.E.: Generalized Functions, vol. 1. Academic Press, New York (1964) · Zbl 0115.33101
[26] Kanwal, R.P.: Generalized Functions. 3rd ed., Birkh \(\ddot{a}\) ser, Boston (2004) · Zbl 1069.46001 · doi:10.1007/978-0-8176-8174-6
[27] Estrada, R., Kanwal, R.P.: A Distributional Approach to Asymptotics, 2nd edn., Birkh \(\ddot{a}\) ser, Boston (2002) · Zbl 1033.46031 · doi:10.1007/978-0-8176-8130-2
[28] Sch \(\ddot{u}\) ker, T.: Distributions: fourier transforms and some of their applications. World Scientif. Singapore (1991) · Zbl 0760.46031
[29] Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations. Springer, New York (1993) · Zbl 0917.35001
[30] Idziaszek, D., Calero, T.: Pseudopotential method for higher partial wave scattering. Phys. Rev. Lett. 96, 013201 (2006) · doi:10.1103/PhysRevLett.96.013201
[31] Dacol, D.K., Ghosh Roy, D.N.: Wave scattering in waveguides. J. Math. Phys. 44, 2133 (2003) · Zbl 1062.76048 · doi:10.1063/1.1563847
[32] Stampfer, F., Wagner, P.: J. Math. Anal. Appl. 342, 202 (2008) · Zbl 1187.81114 · doi:10.1016/j.jmaa.2007.12.004
[33] Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, Berlin (1996) · Zbl 0865.35004 · doi:10.1007/978-1-4612-5338-9
[34] Morse, P.M., Ingaard, K.U.: Theoretical Acoustics. Princeton University Press, Princeton, NJ (1968)
[35] Johnson, S.A., Stenger, F., Wilcox, C., Ball, J., Berggren, M.J.: Wave equations and inverse solutions for soft tissue. Acoustic. Imag. 11, 409 (1981) · doi:10.1007/978-1-4684-1137-9_27
[36] Reid, W.T.: Ordinary Differential Equations. Wiley, New York (1971) · Zbl 0212.10901
[37] Stratton, J.: Electromagnetic Theory. McGraw-Hill, New York (1941) · JFM 67.1119.01
[38] Jackson, J.D.: Classical Electrodynamics. John Wiley, New York (1998) · Zbl 0114.42903
[39] Keller, O.: Attached and radiated electromagnetic fields of an electric point dipole. JOSA B 16, 835. See also Keller, O., Wolf, E. (eds.) Progress in Optics XXXVII. North-Holland, Amsterdam
[40] Nieto-Vesperinas, M.: Scattering and Diffraction in Physical Optics, Wiley, New York (1997). See also Set \(\ddot{a}\) l \(\ddot{a} \), T., Kaivola, M., Friberg, A.T.: Decomposition of the point-dipole field into homogeneous and evanescent parts. Phys. Rev. E 59(1), 1200 (1990). See also Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics, Cambridge University Press, New York (1995). Roseau, M.: Asymptotic Wave Theory. North-Holland, Amsterdam (1976)
[41] Mikki, S., Antar, Y.: New Foundations For Applied Electromagnetics. Artech House, Boston (2016)
[42] Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, D., Photons and Atoms, Introduction to Quantum Electrodynamics, Wiley, New York. See also Brill O.L., Goodman, B.: Causality in the Coulomb gauge. Am. J. Phys. 35, 832 (1967)
[43] Pierce, A.D.: Acoustics. McGraw-Hill, New York (1981)
[44] Williams, E.: Fourier Acoustics. Academic Press, San Diego (1999)
[45] Hecht, E., Sejac, A.: Optics, 2nd edn. Addison-Wesley, Reading, MA (1987)
[46] Bose, J.C.: On the influence of the thickness of the air-space on total reflection of electric radiation. Proc. Roy. Soc. London 62, 300 (1894)
[47] de Fornel, F.: Evanescent Waves. Springer, New York (2001) · doi:10.1007/978-3-540-48913-9
[48] Wolf, E., Foley, J.T.: Opt. Lett. 23, 16 (1998) · doi:10.1364/OL.23.000016
[49] Yaghjian, A.D.: Electric dyadic Green’s functions in the source region. IEEE Proc. 68, 248 (1980). See also Yaghjian, A.D.: Maxwellian and cavity electromagnetic fields within sources. Am J. Phys. 53, 859 (1985) · doi:10.1109/PROC.1980.11620
[50] Frahm, C.P.: Some novel delta-function identities. Am. J. Phys. 51, 826 (1983) · doi:10.1119/1.13127
[51] Farassat, F.: Introduction to Generalized Functions With Applications in Aerodynamics and Aeroacoustics, p. 3428. NASA Tech, Paper (1994)
[52] Bohren, C.F., Huffmann, D.R.: Absorption and Scattering of Light by Small Particles. John Wiley, New York (1983)
[53] Hnizdo, V.: Generalized second-order derivatives of 1/r. Eur. J. Phys. 32, 287 (2011) · Zbl 1218.31006 · doi:10.1088/0143-0807/32/2/003
[54] Weigelhofer, W.: Delta-function identities and electromagnetic field singularities. Am. J. Phys. 57, 455 (1989) · doi:10.1119/1.16001
[55] Lee, S.W.: Singularity in Green’s function and its numerical evaluation. IEEE Trans. Micro. Theor. Tech. 36,1289 (1980). See also Van Bladel, J.: Singular Electromagnetic Fields and Sources, Clarendon Press, Oxford (1991). Also Azvestas, J. S. et al.: Comments on Singularity in Green’s function and its numerical evaluation. IEEE Trans. Ant. Prop. AP 31, 174 (1983)
[56] Moroz, A.: Depolarization field of spheroidal particles. Opt. Soc. Am. B 26, 517 (2009) · doi:10.1364/JOSAB.26.000517
[57] Silberstien, M.: Applications of a generalized Leibnits rule for calculating electromagnetic elds within continuous source regions. Radio Sci. 26, 183 (1991) · doi:10.1029/89RS03057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.