×

Rigorous and effective a-posteriori error bounds for nonlinear problems – application to RB methods. (English) Zbl 07188452

Summary: Quantifying the error that is induced by numerical approximation techniques is an important task in many fields of applied mathematics. Two characteristic properties of error bounds that are desirable are reliability and efficiency. In this article, we present an error estimation procedure for general nonlinear problems and, in particular, for parameter-dependent problems. With the presented auxiliary linear problem (ALP)-based error bounds and corresponding theoretical results, we can prove large improvements in the accuracy of the error predictions compared with existing error bounds. The application of the procedure in parametric model order reduction setting provides a particularly interesting setup, which is why we focus on the application in the reduced basis framework. Several numerical examples illustrate the performance and accuracy of the proposed method.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
65L70 Error bounds for numerical methods for ordinary differential equations

Software:

rbMIT

References:

[1] Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley (2000) · Zbl 1008.65076
[2] Benner, P.; Bujanović, Z., On the solution of large-scale algebraic Riccati equations by using low-dimensional invariant subspaces, Linear Algebra Appl., 488, 430-459 (2016) · Zbl 1330.15017 · doi:10.1016/j.laa.2015.09.027
[3] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 4, 483-531 (2015) · Zbl 1339.37089 · doi:10.1137/130932715
[4] Benner, P.; Ohlberger, M.; Cohen, A.; Willcox, K., Model Reduction and Approximation (2017), Philadelphia: Society for Industrial and Applied Mathematics, Philadelphia · Zbl 1378.65010
[5] Benner, P., Saak, J.: A semi-discretized heat transfer model for optimal cooling of steel profiles. In: Dimension Reduction of Large-Scale Systems, pp 353-356. Springer (2005) · Zbl 1170.80341
[6] Braess, D.: Finite Elements. Cambridge University Press. https://books.google.de/books?id=PizECgOWoGgC (2007) · Zbl 1180.65146
[7] Caloz, G., Rappaz, J.: Handbook of Numerical Analysis, vol. 5, chap Numerical Analysis for Nonlinear and Bifurcation Problems, pp. 487-637 (1997)
[8] Chaturantabut, S.; Sorensen, D., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169 · doi:10.1137/090766498
[9] Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method Springer International Publishing. 10.1007/978-3-319-19267-3 (2015) · Zbl 1401.76003
[10] Haasdonk, B.: Reduced basis methods for parametrized PDEs – a tutorial introduction for stationary and instationary problems. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938, pp 65-136. SIAM, Philadelphia (2017)
[11] Hain, S., Ohlberger, M., Radic, M., Urban, K.: A hierarchical a posteriori error estimator for the reduced basis method. Advances in Computational Mathematics. 10.1007/s10444-019-09675-z (2019) · Zbl 1435.65203
[12] Huynh, D.; Knezevic, D.; Chen, Y.; Hesthaven, J.; Patera, A., A natural-norm successive constraint method for inf-sup lower bounds, Comput. Methods Appl. Mech. Eng., 199, 1963-1975 (2010) · Zbl 1231.76208 · doi:10.1016/j.cma.2010.02.011
[13] Kenney, C.; Hewer, G., The sensitivity of the algebraic and differential Riccati equations, SIAM J. Control. Optim., 28, 1, 50-69 (1990) · Zbl 0695.65025 · doi:10.1137/0328003
[14] Kwakernaak, H.; Sivan, R., Linear Optimal Control Systems, vol. 1 (1972), New York: Wiley-interscience, New York · Zbl 0276.93001
[15] Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford University Press (1995) · Zbl 0836.15005
[16] Maday, Y.; Nguyen, NC; Patera, AT; Pau, SH, A general multipurpose interpolation procedure: The magic points, Commun. Pure Appl. Anal., 8, 1534-392, 383 (2009) · Zbl 1184.65020 · doi:10.3934/cpaa.2009.8.383
[17] Ohlberger, M., A Posteriori Error Estimates and Adaptive Methods for Convection Dominated Transport Processes (2001), Ph.D. thesis: Albert-Ludwigs-Universität Freiburg, Ph.D. thesis · Zbl 1003.76003
[18] Patera, A., Rozza, G.: Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations. To appear in (tentative) MIT Pappalardo Graduate Monographs in Mechanical Engineering. MIT (2007) http://augustine.mit.edu/methodology/methodology_book.htm
[19] Schmidt, A.: Feedback Control for Parametric PDEs Using Reduced Basis Surrogate Models. Ph.D. thesis University of Stuttgart (2018) · Zbl 1409.93006
[20] Schmidt, A.; Haasdonk, B., Reduced basis approximation of large scale parametric algebraic Riccati equations, ESAIM: Control Optim. Calculus Variations, 24, 1, 129-151 (2018) · Zbl 1396.49030 · doi:10.1051/cocv/2017011
[21] Steck, S., Urban, K.: A reduced basis method for the Hamilton-Jacobi-Bellmann equation with application to the european union emission trading scheme. Preprint, University of Ulm (2015) · Zbl 1404.35099
[22] Stykel, T., Numerical solution and perturbation theory for generalized Lyapunov equations, Linear Algebra Appl., 349, 1-3, 155-185 (2002) · Zbl 1003.65042 · doi:10.1016/S0024-3795(02)00255-0
[23] Veroy, K.; Patera, A., Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds, Int. J. Numer. Methods Fluids, 47, 773-788 (2005) · Zbl 1134.76326 · doi:10.1002/fld.867
[24] Veroy, K., Prud’homme, C., Rovas, D., Patera, A.: A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: 16th AIAA Computational Fluid Dynamics Conference. Paper 2003-3847. American Institute of Aeronautics and Astronautics (2003), 10.2514/6.2003-3847 · Zbl 1024.65104
[25] Volkwein, S.: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. Lecture notes, Universität Konstanz (2013) http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.