×

Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. (English) Zbl 1352.74075

Summary: This work deals with the question of the resolution of nonlinear problems for many different configurations in order to build a ’virtual chart’ of solutions. The targeted problems are three-dimensional structures driven by Chaboche-type elastic-viscoplastic constitutive laws. In this context, parametric analysis can lead to highly expensive computations when using a direct treatment. As an alternative, we present a technique based on the use of the time-space proper generalized decomposition in the framework of the LATIN method. To speed up the calculations in the parametrized context, we use the fact that at each iteration of the LATIN method, an approximation over the entire time-space domain is available. Then, a global reduced-order basis is generated, reused and eventually enriched, by treating, one-by-one, all the various parameter sets. The novelty of the current paper is to develop a strategy that uses the reduced-order basis for any new set of parameters as an initialization for the iterative procedure. The reduced-order basis, which has been built for a set of parameters, is reused to build a first approximation of the solution for another set of parameters. An error indicator allows adding new functions to the basis only if necessary. The gain of this strategy for studying the influence of material or loading variability reaches the order of 25 in the industrial examples that are presented.

MSC:

74D10 Nonlinear constitutive equations for materials with memory
74S30 Other numerical methods in solid mechanics (MSC2010)
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

rbMIT
Full Text: DOI

References:

[1] Barrault, An ”empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Académie des Sciences Paris 339 pp 667– (2004)
[2] Gunzburger, Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data, Computational Methods in Applied Mechanical Engineering 196 pp 1030– (2007) · Zbl 1121.65354 · doi:10.1016/j.cma.2006.08.004
[3] Ladevèze, Nonlinear Computational Structural Mechanics-New Approaches and Non-Incremental Methods of Calculation (1999) · Zbl 0912.73003 · doi:10.1007/978-1-4612-1432-8
[4] Ryckelynck, An a priori model reduction method for thermomechanical problems, réduction a priori de modèles thermomécaniques, Comptes Rendus de Mécanique 330 pp 299– (2002) · Zbl 1156.74318 · doi:10.1016/S1631-0721(02)01487-0
[5] Ammar, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids: part II: transient simulation using space-time separated representations, Journal of Non-Newtonian Fluid Mechanics 144 (2-3) pp 98– (2007) · Zbl 1196.76047 · doi:10.1016/j.jnnfm.2007.03.009
[6] Chinesta, A short review on model order reduction based on proper generalized decomposition, Archives of Computational Methods in Engineering 18 (4) pp 395– (2011) · doi:10.1007/s11831-011-9064-7
[7] Maday, The reduced-basis element method: application to a thermal fin problem, Journal on Scientific Computing 26 (1) pp 240– (2004) · Zbl 1077.65120 · doi:10.1137/S1064827502419932
[8] Lieu, Reduced-order fluid/structure modeling of a complete aircraft configuration, Computer Methods In Applied Mechanics and Engineering 195 (41-43) pp 5730– (2006) · Zbl 1124.76042 · doi:10.1016/j.cma.2005.08.026
[9] Ryckelynck, On the a priori model reduction: overview and recent developments, Archives of Computational Methods in Engineering 13 (1) pp 91– (2006) · Zbl 1142.76462 · doi:10.1007/BF02905932
[10] Patera AT Rozza G Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0, MIT 2006
[11] Rozza, On the stability of the reduced basis method for Stokes equations in parametrized domains, Computer Methods in Applied Mechanics and Engineering 196 (7) pp 1244– (2007) · Zbl 1173.76352 · doi:10.1016/j.cma.2006.09.005
[12] Cochelin, Asymptotic-numerical methods and Pade approximants for non-linear elastic structures, International Journal for Numerical Methods in Engineering 37 (7) pp 1187– (1994) · Zbl 0805.73076 · doi:10.1002/nme.1620370706
[13] Cochelin, The asymptotic-numerical method: an efficient perturbation technique for nonlinear structural mechanics, Revue Européenne des Éléments 3 (2) pp 281– (1994) · Zbl 0810.73045 · doi:10.1080/12506559.1994.10511124
[14] Niroomandi, Model order reduction for hyperelastic materials, International Journal for Numerical Methods in Engineering 81 (9) pp 1180– (2010) · Zbl 1183.74365
[15] Niroomandi, Real-time simulation of surgery by reduced-order modeling and X-FEM techniques, International Journal for Numerical Methods in Biomedical Engineering 28 (5) pp 574– (2012) · Zbl 1243.92032 · doi:10.1002/cnm.1491
[16] Najah, A critical review on asymptotic numerical methods, Archive of Computational Methods in Engineering 5 pp 31– (1998) · doi:10.1007/BF02736748
[17] Ammar, Proper generalized decomposition of time-multiscale models, International Journal for Numerical Methods in Engineering 90 (5) pp 569– (2012) · Zbl 1242.65197 · doi:10.1002/nme.3331
[18] Verdon N Joyot P Chinesta F Villon P Others, A PGD-ANM-based Approach for Fast Solving Nonlinear Equations, ECCOMAS 2012
[19] Chinesta, Towards a framework for non-linear thermal models in shell domains, International Journal of Numerical Methods for Heat and Fluid Flow 23 (1) pp 55– (2013) · Zbl 1356.74045 · doi:10.1108/09615531311289105
[20] Chaturantabut, Nonlinear model reduction via discrete emperical interpolation, Siam Journal On Scientific Computing 32 (5) pp 2737– (2010) · Zbl 1217.65169 · doi:10.1137/090766498
[21] Grepl, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis 41 pp 575– (2007) · Zbl 1142.65078 · doi:10.1051/m2an:2007031
[22] Ammar, Non incremental strategies based on separated representations: applications in computational rheology, Communication Mathematical Sciences 8 (3) pp 671– (2010) · Zbl 1281.76022 · doi:10.4310/CMS.2010.v8.n3.a4
[23] Pruliere, On the deterministic solution of multidimensional parametric models using the proper generalized decomposition, Mathematics and Computers in Simulation 81 (4) pp 791– (2010) · Zbl 1207.65014 · doi:10.1016/j.matcom.2010.07.015
[24] Prulière, An efficient reduced simulation of residual stresses in composite forming processes, International Journal of Material Forming 3 (2) pp 1339– (2010) · doi:10.1007/s12289-009-0675-6
[25] Jung, Reduced Basis Method for quadratically nonlinear transport equations, International Journal of Computing Science and Mathematics 2 (4) pp 334– (2009) · Zbl 1189.65225 · doi:10.1504/IJCSM.2009.030912
[26] Cremonesi, A PGD-based homogenization technique for the resolution of nonlinear multiscale problems, Computer Methods in Applied Mechanics and Engineering 267 pp 275– (2013) · Zbl 1286.74084 · doi:10.1016/j.cma.2013.08.009
[27] Néron, A computational strategy for poroelastic problems with a time interface between coupled physics, International Journal for Numerical Methods in Engineering 73 (6) pp 783– (2008) · Zbl 1195.74039 · doi:10.1002/nme.2091
[28] Chinesta, Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models, Archives of Computational Methods in Engineering 17 (4) pp 327– (2010) · Zbl 1269.65106 · doi:10.1007/s11831-010-9049-y
[29] Boucard, A multiple solution method for non-linear structural mechanics, Mechanical Engineering 50 (5) pp 317– (1999)
[30] Allix, A new multi-solution approach suitable for structural identification problems, Computer Methods in Applied Mechanics and Engineering 191 pp 2727– (2002) · Zbl 1131.74322 · doi:10.1016/S0045-7825(02)00211-6
[31] Heyberger, Multiparametric analysis within the proper generalized decomposition framework, Computational Mechanics 49 (3) pp 277– (2012) · Zbl 1246.80011 · doi:10.1007/s00466-011-0646-x
[32] Heyberger, A rational strategy for the resolution of parametrized problems in the PGD framework, Computer Methods in Applied Mechanics and Engineering 259 pp 40– (2013) · Zbl 1286.65081 · doi:10.1016/j.cma.2013.03.002
[33] Chinesta, PGD-based computational vademecum for efficient design, optimization and control, Archives of Computational Methods in Engineering 20 (1) pp 31– (2013) · Zbl 1354.65100 · doi:10.1007/s11831-013-9080-x
[34] Chinesta, The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer (2014) · Zbl 1287.65001 · doi:10.1007/978-3-319-02865-1
[35] Relun, A model reduction technique based on the PGD for elastic-viscoplastic computational analysis, Computational Mechanics 51 (1) pp 83– (2013) · Zbl 1398.74474 · doi:10.1007/s00466-012-0706-x
[36] Nouy, A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations, Computer Methods In Applied Mechanics and Engineering 199 (23-24) pp 1603– (2010) · Zbl 1231.76219 · doi:10.1016/j.cma.2010.01.009
[37] Ladevèze, Multiscale Methods-Bridging the Scales in Science and Engineering pp 247– (2009) · doi:10.1093/acprof:oso/9780199233854.003.0009
[38] Boucard, Une application de la méthode latin au calcul multirésolution de structures non linéaires, Revue Européenne des Eléments Finis 8 (8) pp 903– (1999) · Zbl 0980.74058 · doi:10.1080/12506559.1999.10511417
[39] Boucard P-A Application of the LATIN method to the calculation of response surfaces Proceeding of the First MIT Conference on Computational Fluid and Solid Mechanics 1 Cambridge, USA 2001 78 81
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.