×

Adaptive mesh refinement for coupled elliptic-hyperbolic systems. (English) Zbl 1104.65092

Summary: We present a modification to the adaptive mesh refinement algorithm of M. J. Berger and J. Oliger [ibid. 53, 484–512 (1984; Zbl 0536.65071)] designed to solve systems of coupled, nonlinear, hyperbolic and elliptic partial differential equations. Such systems typically arise during constrained evolution of the field equations of general relativity. The novel aspect of this algorithm is a technique of “extrapolation and delayed solution” used to deal with the non-local nature of the solution of the elliptic equations, driven by dynamical sources, within the usual Berger and Oliger time-stepping framework.
We show empirical results demonstrating the effectiveness of this technique in axisymmetric gravitational collapse simulations, and further demonstrate that the solution time scales approximately linearly with problem size. We also describe several other details of the code, including truncation error estimation using a self-shadow hierarchy, and the refinement-boundary interpolation operators that are used to help suppress spurious high-frequency solution components (“noise”).

MSC:

65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
83-08 Computational methods for problems pertaining to relativity and gravitational theory
35M20 PDE of composite type (MSC2000)

Citations:

Zbl 0536.65071

References:

[1] Lehner, L., Numerical relativity: a review, Class. Quant. Grav., 18, R25 (2001) · Zbl 0987.83001
[2] C. Gundlach, Critical phenomena in gravitational collapse, Living Rev. Rel. 2 1999-4.; C. Gundlach, Critical phenomena in gravitational collapse, Living Rev. Rel. 2 1999-4. · Zbl 0944.83020
[3] B. Berger, Numerical Approaches to Spacetime Singularities, Living Rev. Rel. 2002-1.; B. Berger, Numerical Approaches to Spacetime Singularities, Living Rev. Rel. 2002-1. · Zbl 1023.83003
[4] L. Smarr, The Structure of General Relativity with a Numerical Illustration: The Collision of Two Black Holes, University of Texas at Austin Ph.D. thesis, 1975.; L. Smarr, The Structure of General Relativity with a Numerical Illustration: The Collision of Two Black Holes, University of Texas at Austin Ph.D. thesis, 1975.
[5] Brügmann, B.; Tichy, W.; Jansen, N., Numerical simulation of orbiting black holes, Phys. Rev. Lett., 92, 211101 (2004)
[6] Duez, M. D.; Marronetti, P.; Shapiro, S. L.; Baumgarte, T. W., Hydrodynamic simulations in 3+1 general relativity, Phys. Rev. D, 67, 024004 (2003)
[7] Choptuik, M. W., Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett., 70, 9 (1993)
[8] Hamade, R. S.; Stewart, J. M., The spherically symmetric collapse of a massless scalar field, Class. Quant. Grav., 13, 497 (1996) · Zbl 0849.53068
[9] Hamade, R. S.; Horne, J. H.; Stewart, J. M., Continuous self-similarity and S-duality, Class. Quant. Grav., 13, 2241 (1996) · Zbl 0858.53075
[10] Choptuik, M. W.; Chmaj, T.; Bizon, P., Critical behaviour in gravitational collapse of a Yang-Mills field, Phys. Rev. Lett., 77, 424 (1996)
[11] Choptuik, M. W.; Hirschmann, E. W.; Liebling, S. L.; Pretorius, F., Critical collapse of the massless scalar field in axisymmetry, Phys. Rev. D, 68, 044007 (2003) · Zbl 1244.83004
[12] Choptuik, M. W.; Hirschmann, E. W.; Liebling, S. L.; Pretorius, F., Critical collapse of a complex scalar field with angular momentum, Phys. Rev. Lett., 93, 131101 (2004)
[13] Liebling, S. L.; Choptuik, M. W., Black hole criticality in the Brans-Dicke model, Phys. Rev. Lett., 77, 1424 (1996)
[14] Choptuik, M. W.; Hirschmann, E. W.; Liebling, S. L., Instability of an ‘Approximate Black Hole’, Phys. Rev. D, 55, 6014 (1997)
[15] Liebling, S. L., The singularity threshold of the nonlinear sigma model using 3D adaptive mesh refinement, Phys. Rev. D, 66, 041703 (2002)
[16] S. Hern, Numerical Relativity and Inhomogeneous Cosmologies, PhD dissertation, Cambridge, gr-qc/0004036, 1999.; S. Hern, Numerical Relativity and Inhomogeneous Cosmologies, PhD dissertation, Cambridge, gr-qc/0004036, 1999.
[17] Brügmann, B., Adaptive mesh and geodesically sliced Schwarzschild spacetime in 3+1 dimensions, Phys. Rev. D, 54, 7361 (1996)
[18] Papadopoulos, P.; Seidel, E.; Wild, L., Adaptive computation of gravitational waves from black hole interactions, Phys. Rev. D, 58, 084002 (1998)
[19] New, K. C.B.; Choi, D.; Centrella, J. M.; MacNeice, P.; Huq, M. F.; Olson, K., Three-dimensional adaptive evolution of gravitational waves in numerical relativity, Phys. Rev. D, 62, 084039 (2000)
[20] Schnetter, E.; Hawley, S. H.; Hawke, I., Evolutions in 3D numerical relativity using fixed mesh refinement, Class. Quant. Grav., 21, 1465 (2004) · Zbl 1047.83002
[21] Imbiriba, B., Evolving a puncture black hole with fixed mesh refinement, Phys. Rev. D, 70, 124025 (2004)
[22] Pretorius, F., Numerical relativity using a generalized harmonic decomposition, Class. Quant. Grav., 22, 425 (2005) · Zbl 1067.83001
[23] Diener, P.; Jansen, N.; Khokhlov, A.; Novikov, I., Adaptive mesh refinement approach to construction of initial data for black hole collisions, Class. Quant. Grav., 17, 435 (2000) · Zbl 0943.83032
[24] Brown, J. D.; Lowe, L. L., Distorted black hole initial data using the puncture method, Phys. Rev. D, 70, 124014 (2004)
[25] Brown, J. D.; Lowe, L. L., Multigrid elliptic equation solver with adaptive mesh refinement, J. Comp. Phys., 209, 582 (2005) · Zbl 1073.65141
[26] F. Pretorius, Evolution of binary black hole spacetimes, qr-qc/0507014, 2005.; F. Pretorius, Evolution of binary black hole spacetimes, qr-qc/0507014, 2005.
[27] Misner, C. W.; Thorne, K. S.; Wheeler, J. A., Gravitation (1973), W.H. Freeman and Company: W.H. Freeman and Company New York
[28] Arnowitt, R.; Deser, S.; Misner, C. W., (Witten, L., Gravitation: An Introduction to Current Research (1962), Wiley: Wiley New York) · Zbl 0115.43103
[29] Piran, T., Numerical codes for cylindrical relativistic systems, J. Comp. Phys., 35, 254 (1980) · Zbl 0424.65062
[30] Gravitation (1973), W.H. Freeman and Company: W.H. Freeman and Company New York
[31] Almgren, A. S.; Bell, J. B.; Colella, P.; Howell, L. H.; Welcome, M. L., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, J. Comput. Phys., 142, 1 (1998) · Zbl 0933.76055
[32] Choptuik, M. W.; Hirschmann, E. W.; Liebling, S. L.; Pretorius, F., An axisymmetric gravitational collapse code, Class. Quant. Grav., 20, 1857 (2003) · Zbl 1044.83002
[33] Lindblom, L.; Scheel, M. A., Energy norms and the stability of the Einstein evolution equations, Phys. Rev. D, 66, 084014 (2002)
[34] H. Shinkai, G. Yoneda, Re-formulating the Einstein equations for stable numerical simulations: formulation problem in numerical relativity, gr-qc/0209111.; H. Shinkai, G. Yoneda, Re-formulating the Einstein equations for stable numerical simulations: formulation problem in numerical relativity, gr-qc/0209111.
[35] M. Anderson, R.A. Matzner, Extended lifetime in computational evolution of isolated black holes, gr-qc/0307055.; M. Anderson, R.A. Matzner, Extended lifetime in computational evolution of isolated black holes, gr-qc/0307055. · Zbl 1119.83324
[36] Matzner, R. A., Hyperbolicity and constrained evolution in linearized gravity, Phys. Rev. D, 71, 024011 (2005)
[37] Holst, M.; Lindblom, L.; Owen, R.; Pfeiffer, H. P.; Scheel, M. A.; Kidder, Lawrence E., Optimal constraint projection for hyperbolic evolution systems, Phys. Rev. D, 70, 084017 (2004)
[38] Bonazzola, S.; Gourgoulhon, E.; Grandclement, P.; Novak, J., A constrained scheme for Einstein equations based on Dirac gauge and spherical coordinates, Phys. Rev. D, 70, 104007 (2004)
[39] York, J. W., (Smarr, L., Sources of Gravitational Radiation (1978), Cambridge University Press: Cambridge University Press Seattle) · Zbl 0407.00016
[40] Pfeiffer, H. P.; Kidder, L. E.; Scheel, M. A.; Teukolsky, S. A., A multidomain spectral method for solving elliptic equations, Comput. Phys. Commun., 152, 253 (2003) · Zbl 1196.65179
[41] Pretorius, F.; Lehner, L., Adaptive mesh refinement for characteristic codes, J. Comp. Phys., 198, 10 (2004) · Zbl 1052.65090
[42] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comp. Phys., 53, 484 (1984) · Zbl 0536.65071
[43] F. Pretorius, Numerical Simulations of Gravitational Collapse, University of British Columbia, Ph.D. thesis, 2002.; F. Pretorius, Numerical Simulations of Gravitational Collapse, University of British Columbia, Ph.D. thesis, 2002.
[44] H. Kreiss, J. Oliger, Methods for the approximate solution of time dependent problems, Global Atmospheric Research Programme, Publications Series No. 10, 1973.; H. Kreiss, J. Oliger, Methods for the approximate solution of time dependent problems, Global Atmospheric Research Programme, Publications Series No. 10, 1973.
[45] R.L. Marsa, M.W. Choptuik, The RNPL User’s Guide, 1995. Available from: <http://laplace.physics.ubc.ca/Members/marsa/rnpl/users_guide/users_guide.html>; R.L. Marsa, M.W. Choptuik, The RNPL User’s Guide, 1995. Available from: <http://laplace.physics.ubc.ca/Members/marsa/rnpl/users_guide/users_guide.html>
[46] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. Comput., 31, 330 (1977) · Zbl 0373.65054
[47] Trottenberg, U.; Oosterlee, C.; Schuller, A., Multigrid (2001), Academic Press: Academic Press London · Zbl 0976.65106
[48] M.W. Choptuik, A Study of Numerical Techniques for the Initial Value Problem in General Relativity, University of British Columbia, M.Sc. thesis, 1982.; M.W. Choptuik, A Study of Numerical Techniques for the Initial Value Problem in General Relativity, University of British Columbia, M.Sc. thesis, 1982.
[49] Choptuik, M. W.; Unruh, W. G., An introduction to the multi-grid method for numerical relativists, Gen. Relat. Grav., 18, 813 (1986)
[50] Bardeen, J.; Piran, T., General relativistic axisymmetric rotating systems: coordinates and equations, Phys. Rep., 96, 205 (1983)
[51] Stark, R. F.; Piran, T., Gravitational-wave emission from rotating gravitational collapse, Phys. Rev. Lett., 55, 891 (1985)
[52] Evans, C. R., (Centrella, J., Dynamical Spacetimes and Numerical Relativity (1986), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0656.53065
[53] Nakamura, T.; Oohara, K.; Kojima, Y., General relativistic collapse of axially symmetric stars, Prog. Theor. Phys. Suppl., 90, 13 (1987)
[54] Evans, C. R., (Evans, C. R.; Finn, L. S.; Hoboll, D. W., Frontiers in Numerical Relativity (1989), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0697.53064
[55] Shapiro, S. L.; Teukolsky, S. A., Formation of naked singularities: the violation of cosmic censorship, Phys. Rev. Lett., 66, 994 (1991) · Zbl 0968.83515
[56] Abrahams, A. M.; Evans, C. R., Trapping a geon: black hole formation by an imploding gravitational wave, Phys. Rev. D, 46, R4117 (1992)
[57] Abrahams, A. M.; Evans, C. R., Critical behavior and scaling in vacuum axisymmetric gravitational collapse, Phys. Rev. Lett., 70, 2980 (1993)
[58] Abrahams, A. M.; Cook, G. B.; Shapiro, S. L.; Teukolsky, S. A., Solving Einstein’s equations for rotating spacetimes: evolution of relativistic star clusters, Phys. Rev. D, 49, 5153 (1994)
[59] Cook, G. B.; Shapiro, S. L.; Teukolsky, S. A., Testing a simplified version of Einstein’s equations for numerical relativity, Phys. Rev. D, 53, 5533 (1996)
[60] Dimmelmeier, H.; Font, J. A.; Mueller, E., Relativistic simulations of rotational core collapse. I. Methods, initial models, and code tests, Astron. Astrophys., 388, 917 (2002)
[61] Garfinkle, D.; Duncan, G. C., Numerical evolution of Brill waves, Phys. Rev. D, 63, 044011 (2001)
[62] Olabarrieta, I.; Choptuik, M. W., Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry, Phys. Rev. D, 65, 024007 (2002)
[63] Ventrella, J. F.; Choptuik, M. W., Critical phenomena in the Einstein-Massless-Dirac system, Phys. Rev. D, 68, 044020 (2003)
[64] Andersson, L.; Moncrief, V., Elliptic-hyperbolic systems and the Einstein equations, Annales Henri Poincare, 4, 1 (2003) · Zbl 1028.83005
[65] McCormick, S. F.; Thomas, J., Math. Comput., 46, 439 (1986) · Zbl 0594.65078
[66] D. Choi, Private Communication.; D. Choi, Private Communication.
[67] Berger, M. J.; Rigoutsos, I., An algorithm for point clustering and grid generation, IEEE Trans., 21, 5 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.