×

Critical collapse of the massless scalar field in axisymmetry. (English) Zbl 1244.83004

Summary: We present the results from a numerical study of critical gravitational collapse of axisymmetric distributions of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric critical solution with axisymmetric perturbations. However, we see indications of a growing, nonspherical mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric self-similar solution. The existence of a nonspherical unstable mode is in conflict with previous perturbative results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead seeing a marginally stable mode that is rendered unstable by numerical approximation.

MSC:

83-08 Computational methods for problems pertaining to relativity and gravitational theory
83C57 Black holes

References:

[1] M.W. Choptuik, Phys. Rev. Lett. 70 pp 9– (1993) · doi:10.1103/PhysRevLett.70.9
[2] C. Gundlach, Phys. Rep. 376 pp 339– (2003) · Zbl 1010.83035 · doi:10.1016/S0370-1573(02)00560-4
[3] C. Gundlach, Living Rev. Relativ. 2 pp 4– (1999) · Zbl 0944.83020 · doi:10.12942/lrr-1999-4
[4] A. Wang, Braz. J. Phys. 31 pp 188– (2001) · doi:10.1590/S0103-97332001000200009
[5] A.M. Abrahams, Phys. Rev. Lett. 70 pp 2980– (1993) · doi:10.1103/PhysRevLett.70.2980
[6] A.M. Abrahams, Phys. Rev. D 49 pp 3998– (1994) · doi:10.1103/PhysRevD.49.3998
[7] S.L. Liebling, Phys. Rev. D 66 pp 041703– (2002) · doi:10.1103/PhysRevD.66.041703
[8] T. Koike, Phys. Rev. Lett. 74 pp 5170– (1995) · doi:10.1103/PhysRevLett.74.5170
[9] C.R. Evans, Phys. Rev. Lett. pp 1782– (1994) · doi:10.1103/PhysRevLett.72.1782
[10] J.M. Martín-García, Phys. Rev. D 59 pp 064031– (1999) · doi:10.1103/PhysRevD.59.064031
[11] C. Gundlach, Phys. Rev. D 57 pp 7075– (1998) · doi:10.1103/PhysRevD.57.R7075
[12] C. Gundlach, Phys. Rev. D 65 pp 084021– (2002) · doi:10.1103/PhysRevD.65.084021
[13] M.W. Choptuik, Class. Quantum Grav. 20 pp 1857– (2003) · Zbl 1044.83002 · doi:10.1088/0264-9381/20/9/318
[14] K. Maeda, Prog. Theor. Phys. 63 pp 719– (1980) · doi:10.1143/PTP.63.719
[15] D. Garfinkle, Class. Quantum Grav. 16 pp 4111– (1999) · Zbl 0947.83008 · doi:10.1088/0264-9381/16/12/325
[16] D. Garfinkle, Phys. Rev. D 58 pp 064024– (1998) · doi:10.1103/PhysRevD.58.064024
[17] M. Berger, J. Comput. Phys. 53 pp 484– (1984) · Zbl 0536.65071 · doi:10.1016/0021-9991(84)90073-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.