×

The convergence rate of solutions in chemotaxis models with density-suppressed motility and logistic source. (English) Zbl 07874571

Summary: This paper is concerned with a class of parabolic-elliptic chemotaxis models with density-suppressed motility and general logistic source in an \(n\)-dimensional smooth bounded domain. With some conditions on the density-suppressed motility function, we show the convergence rate of solutions is exponential as time tends to infinity for such kind of models.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B51 Comparison principles in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., 17, 35-92, 1964 · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[2] Ahn, J.; Yoon, CW, Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32, 4, 1327-1351, 2019 · Zbl 1409.35104 · doi:10.1088/1361-6544/aaf513
[3] Burger, M.; Laurençot, P.; Trescases, A., Delayed blow-up for chemotaxis models with local sensing, J. Lond. Math. Soc., 103, 4, 1596-1617, 2021 · Zbl 1470.35073 · doi:10.1112/jlms.12420
[4] Cao, XR, Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. B, 22, 9, 3369-3378, 2017 · Zbl 1370.35052
[5] Desvillettes, L.; Kim, YJ; Trescases, A.; Yoon, CW, A logarithmic chemotaxis model featuring global existence and aggregation, Nonlinear Anal. Real World Appl., 50, 562-582, 2019 · Zbl 1430.92014 · doi:10.1016/j.nonrwa.2019.05.010
[6] Fu, XF; Tang, LH; Liu, CL; Huang, JD; Hwa, T.; Lenz, P., Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108, 19, 1981-1988, 2012 · doi:10.1103/PhysRevLett.108.198102
[7] Fujie, K.; Jiang, J., Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equ., 269, 6, 5338-5378, 2020 · Zbl 1440.35330 · doi:10.1016/j.jde.2020.04.001
[8] Fujie, K.; Jiang, J., Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities, Acta Appl. Math., 176, 1-36, 2021 · Zbl 1478.35035 · doi:10.1007/s10440-021-00450-1
[9] Fujie, K.; Jiang, J., Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities, Calc. Var. Partial Differ. Equ., 60, 3, 92, 2021 · Zbl 1467.35044 · doi:10.1007/s00526-021-01943-5
[10] Hillen, T.; Painter, KJ, A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 1-2, 183-217, 2009 · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[11] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresber. Deutsch. Math. Verein., 105, 3, 103-165, 2003 · Zbl 1071.35001
[12] Jin, HY; Kim, YJ; Wang, ZA, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78, 3, 1632-1657, 2018 · Zbl 1393.35100 · doi:10.1137/17M1144647
[13] Jin, HY; Wang, ZA, Critical mass on the Keller-Segel system with signal-dependent motility, Proc. Am. Math. Soc., 148, 11, 4855-4873, 2020 · Zbl 1448.35516 · doi:10.1090/proc/15124
[14] Jin, HY; Wang, ZA, The Keller-Segel system with logistic growth and signal-dependent motility, Discret. Contin. Dyn. Syst. Ser. B, 26, 6, 3023-3041, 2021 · Zbl 1466.35038
[15] Keller, EF; Segel, LA, J. Theoret. Biol., Model for chemotaxis, 30, 2, 225-234, 1971 · Zbl 1170.92307
[16] Lankeit, J., Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., 258, 4, 1158-1191, 2015 · Zbl 1319.35085 · doi:10.1016/j.jde.2014.10.016
[17] Liu, ZR; Xu, J., Large time behavior of solutions for density-suppressed motility system in higher dimensions, J. Math. Anal. Appl., 475, 2, 1596-1613, 2019 · Zbl 1416.35277 · doi:10.1016/j.jmaa.2019.03.033
[18] Liu, C., Sequential establishment of stripe patterns in an expanding cell population, Science, 334, 238-241, 2011 · doi:10.1126/science.1209042
[19] Lv, WB; Wang, QY, Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term, Evol. Equ. Control Theory, 10, 1, 25-36, 2021 · Zbl 1480.35005 · doi:10.3934/eect.2020040
[20] Lv, WB; Wang, QY, An \(n\)-dimensional chemotaxis system with signal-dependent motility and generalized logistic source: global existence and asymptotic stabilization, Proc. R. Soc. Edinburgh Sect. A, 151, 2, 821-841, 2021 · Zbl 1467.35324 · doi:10.1017/prm.2020.38
[21] Lyu, WB; Wang, ZA, Logistic damping effect in chemotaxis models with density-suppressed motility, Adv. Nonlinear Anal., 12, 1, 336-355, 2023 · Zbl 1505.35043 · doi:10.1515/anona-2022-0263
[22] Porzio, MM; Vespri, V., Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103, 146-178, 1993 · Zbl 0796.35089 · doi:10.1006/jdeq.1993.1045
[23] Suzuki, T., Free energy and self-interacting particles, Progress in Nonlinear Differential Equations and their Applications, 2005, Boston: Birkhäuser Boston Inc, Boston · Zbl 1082.35006
[24] Suzuki, T., Chemotaxis, reaction, network, 2018, Hackensack: World Scientific Publishing, Hackensack · Zbl 1406.35003 · doi:10.1142/10926
[25] Tao, XY; Fang, ZB, Global boundedness and stability in a density-suppressed motility model with generalized logistic source and nonlinear signal production, Z. Angew. Math. Phys., 73, 3, 123, 2022 · Zbl 1491.35028 · doi:10.1007/s00033-022-01775-z
[26] Tao, YS; Winkler, M., Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Methods Appl. Sci., 27, 9, 1645-1683, 2017 · Zbl 1516.35092 · doi:10.1142/S0218202517500282
[27] Tello, JI; Winkler, M., A chemotaxis system with logistic source, Commun. Partial Differ. Equ., 32, 4-6, 849-877, 2007 · Zbl 1121.37068 · doi:10.1080/03605300701319003
[28] Viglialoro, G., Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439, 1, 197-212, 2016 · Zbl 1386.35163 · doi:10.1016/j.jmaa.2016.02.069
[29] Wang, JP; Wang, MX, Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 60, 1, 2019 · Zbl 1406.35154 · doi:10.1063/1.5061738
[30] Wang, ZA, On the parabolic-elliptic Keller-Segel system with signal-dependent motilities: a paradigm for global boundedness and steady states, Math. Methods Appl. Sci., 44, 13, 10881-10898, 2021 · Zbl 1475.35366 · doi:10.1002/mma.7455
[31] Wang, ZA; Zheng, JS, Global boundedness of the fully parabolic Keller-Segel system with signal-dependent motilities, Acta Appl. Math., 171, 25, 2021 · Zbl 1469.35113 · doi:10.1007/s10440-021-00392-8
[32] Winkler, M., \(L^1\) solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation, Ann. Sc. Norm. Super. Pisa Cl. Sci., XXIV, 141-172, 2023 · Zbl 1517.35096
[33] Winkler, M., Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348, 2, 708-729, 2008 · Zbl 1147.92005 · doi:10.1016/j.jmaa.2008.07.071
[34] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35, 8, 1516-1537, 2010 · Zbl 1290.35139 · doi:10.1080/03605300903473426
[35] Winkler, M., Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384, 2, 261-272, 2011 · Zbl 1241.35028 · doi:10.1016/j.jmaa.2011.05.057
[36] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 5, 748-767, 2013 · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[37] Winkler, M., Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differ. Equ., 257, 4, 1056-1077, 2014 · Zbl 1293.35048 · doi:10.1016/j.jde.2014.04.023
[38] Winkler, M., How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24, 5, 809-855, 2014 · Zbl 1311.35040 · doi:10.1007/s00332-014-9205-x
[39] Winkler, M., Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discret. Contin. Dyn. Syst. Ser. B, 22, 7, 2777-2793, 2017 · Zbl 1377.35158
[40] Winkler, M., Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69, 2, 1-25, 2018 · Zbl 1395.35048 · doi:10.1007/s00033-018-0935-8
[41] Winkler, M., Attractiveness of constant states in logistic-type Keller-Segel systems involving subquadratic growth restrictions, Adv. Nonlinear Stud., 20, 4, 795-817, 2020 · Zbl 1465.35065 · doi:10.1515/ans-2020-2107
[42] Winkler, M., The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in \(L^1\), Adv. Nonlinear Anal., 9, 1, 526-566, 2020 · Zbl 1419.35099 · doi:10.1515/anona-2020-0013
[43] Xiang, T., Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system, J. Math. Phys., 59, 8, 2018 · Zbl 1395.92025 · doi:10.1063/1.5018861
[44] Yan, JL; Fuest, M., When do Keller-Segel systems with heterogeneous logistic sources admit generalized solutions?, Discrete Contin. Dyn. Syst. Ser. B, 26, 8, 4093-4109, 2021 · Zbl 1472.35413
[45] Yoon, C.; Kim, YJ, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149, 101-123, 2017 · Zbl 1398.35110 · doi:10.1007/s10440-016-0089-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.