×

Modeling the effects of systemic mediators on the inflammatory phase of wound healing. (English) Zbl 1412.92047

Summary: The normal wound healing response is characterized by a progression from clot formation, to an inflammatory phase, to a repair phase, and finally, to remodeling. In many chronic wounds there is an extended inflammatory phase that stops this progression. In order to understand the inflammatory phase in more detail, we developed an ordinary differential equation model that accounts for two systemic mediators that are known to modulate this phase, estrogen (a protective hormone during wound healing) and cortisol (a hormone elevated after trauma that slows healing). This model describes the interactions in the wound between wound debris, pathogens, neutrophils and macrophages and the modulation of these interactions by estrogen and cortisol. A collection of parameter sets, which qualitatively match published data on the dynamics of wound healing, was chosen using latin hypercube sampling. This collection of parameter sets represents normal healing in the population as a whole better than one single parameter set. Including the effects of estrogen and cortisol is a necessary step to creating a patient specific model that accounts for gender and trauma. Utilization of math modeling techniques to better understand the wound healing inflammatory phase could lead to new therapeutic strategies for the treatment of chronic wounds. This inflammatory phase model will later become the inflammatory subsystem of our full wound healing model, which includes fibroblast activity, collagen accumulation and remodeling.

MSC:

92C30 Physiology (general)
Full Text: DOI

References:

[1] Almeida, L.; Bagnerini, P.; Habbal, A.; Noselli, S.; Serman, F., A mathematical model for dorsal closure, J. Theor. Biol., 268, 1, 105-119 (2011) · Zbl 1411.92023
[2] Arciero, J. C.; Mi, Q.; Branca, M. F.; Hackam, D. J.; Swigon, D., Continuum model of collective cell migration in wound healing and colony expansion, Biophys. J., 100, 3, 535-543 (2011), (Feb)
[3] Arciero, J. C.; Mi, Q.; Branca, M.; Hackam, D.; Swigon, D., Using a continuum model to predict closure time of gaps in intestinal epithelial cell layers, Wound Repair Regen., 21, 2, 256-265 (2013), (Apr)
[4] Ashcroft, G. S.; Ashworth, J. J., Potential Role of Estrogens in Wound Healing, Am. J. Clin. Dermatol., 4, 11, 737-743 (2003)
[5] Ashcroft, G. S.; Greenwell-Wild, T.; Horan, M. A.; Wahl, S. M.; Ferguson, M. W., Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response, Am. J. Pathol., 155, 4, 1137-1146 (1999), (Oct)
[6] Ashcroft, G. S.; Mills, S. J.; Lei, K.; Gibbons, L.; Jeong, Moon-Jin; Taniguchi, M., Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor, J. Clin. Invest., 111, 9, 1309 (2003)
[7] Brancato, S. K.; Albina, J. E., Wound macrophages as key regulators of repair: origin, phenotype, and function, Am. J. Pathol., 178, 1, 19-25 (2011), (Jan)
[8] Brincat, M.; Versi, E.; Moniz, C. F.; Magos, A.; de Trafford, J.; Studd, J. W., Skin collagen changes in postmenopausal women receiving different refimens of estrogen therapy, Obstet. Gynecol., 70, 1, 123-127 (1987), (Jul)
[9] Broughton, G.; Janis, J. E.; Attinger, C. E., The basic science of wound healing, Plast. Reconstr. Surg.. Plast. Reconstr. Surg., 117, Suppl., 12S-34S (2006), (Jun)
[10] Campbell, L.; Emmerson, E.; Davies, F.; Gilliver, S. C.; Krust, A.; Chambon, P., Estrogen promotes cutaneous wound healing via estrogen receptor β independent of its antiinflammatory activities, J. Exp. Med., 207, 9, 1825-1833 (2010), (Aug)
[11] Campos, A. C.L.; Groth, A. K.; Branco, A. B., Assessment and nutritional aspects of wound healing, Curr. Opin. Clin. Nutr. Metab. Care, 11, 3, 281-288 (2008), (May)
[12] Christian, L. M.; Graham, J. E.; Padgett, D. A.; Glaser, R.; Kiecolt-Glaser, J. K., Stress and wound healing, Neuroimmunomodulation, 13, 5-6, 337-346 (2006)
[13] Coxon, A.; Tang, T.; Mayadas, T. N., Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo a role for granulocyte/macrophage colony-stimulating factor, J. Exp. Med., 190, 7, 923-934 (1999), (Oct)
[14] Day, J.; Rubin, J.; Vodovotz, Y.; Chow, C. C.; Reynolds, A.; Clermont, G., A reduced mathematical model of the acute inflammatory response. II. Capturing scenarios of repeated endotoxin administration, J. Theor. Biol., 242, 1, 237-256 (2006), (Sep) · Zbl 1441.92011
[15] Deitch, E.; Bridges, M., Stress hormones modulation neutrophil and lymphocyte activity in vitro, J. Trauma-Injury Infect. Crit. Care, 27, 10, 1146-1154 (1987)
[16] Delavary, B. M.; van der Veer, W. M.; van Egmond, M.; Niessen, F. B.; Beelen, R. H.J., Macrophages in skin injury and repair, Immunobiology, 216, 7, 753-762 (2011)
[17] DiPietro, L. A.; Burdick, M.; Low, Q. E.; Kunkel, S. L.; Strieter, R. M., MIP-1alpha as a critical macrophage chemoattractant in murine wound repair, J. Clin. Invest., 101, 8, 1693-1698 (1998), (Apr)
[18] Diegelmann, R. F.; Evans, M. C., Wound healing: an overview of acute, fibrotic and delayed healing, Front. Biosci., 9, 283-289 (2004), (Jan)
[19] Dovi, J. V.; He, L. K.; DiPietro, L. A., Accelerated wound closure in neutrophil-depleted mice, J. Leukocyte Biol., 73, 4, 448-455 (2003)
[20] Dovi, J. V.; Szpaderska, A. M.; DiPietro, L. A., Neutrophil function in the healing wound: adding insult to injury, Thromb. Haemost., 92, 275-280 (2004)
[21] Ferrante, C. J.; Leibovich, S. J., Regulation of macrophage polarization and wound healing, Adv. Wound Care (New Rochelle), 1, 1, 10-16 (2012), (Feb)
[22] Flegg, J. A.; Byrne, H. M.; McElwain, D. L.S., Mathematical model of hyperbaric oxygen therapy applied to chronic diabetic wounds, Bull. Math. Biol., 72, 7, 1867-1891 (2010), (Oct) · Zbl 1202.92039
[23] Flegg, J. A.; Byrne, H. M.; Flegg, M. B.; Sean McElwain, D. L., Wound healing angiogenesis: the clinical implications of a simple mathematical model, J. Theor. Biol., 300, 309-316 (2012), (May) · Zbl 1397.92324
[24] Fox, S.; Leitch, A. E.; Duffin, R.; Haslett, C.; Rossi, A. G., Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease, J. Innate Immun., 2, 3, 216-227 (2010), (Apr)
[25] Friedman, A.; Xue, C., A mathematical model for chronic wounds, Math. Biosci. Eng., 8, 2, 253-261 (2011), (Apr) · Zbl 1259.92043
[26] Friedman, A.; Hu, B.; Xue, C., Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42, 5, 2013-2040 (2010), (Jan) · Zbl 1217.35195
[27] Gillitzer, R.; Goebeler, M., Chemokines in cutaneous wound healing, J. Leukocyte Biol., 69, 4, 513-521 (2001)
[28] Goldberg, S. R.; Diegelmann, R. F., Wound healing primer, Surg. Clin. North Am., 90, 6, 1133-1146 (2010), (Dec)
[29] Gosain, A.; Gamelli, R. L.; DiPietro, L. A., Norepinephrine-mediated suppression of phagocytosis by wound neutrophils, J. Surg. Res., 152, 2, 311-318 (2009), (Apr)
[30] Guo, S.; DiPietro, L. A., Factors affecting wound healing, J. Dent. Res., 89, 3, 219-229 (2010)
[31] Janeway, C.; Travers, P.; Capra, J., Immunobiology: The Immunesystem in Health and Disease (1999), Garland Publishing: Garland Publishing New York
[32] Javierre, E.; Vermolen, F. J.; Vuik, C.; van der Zwaag, S., A mathematical analysis of physiological and morphological aspects of wound closure, J. Math. Biol., 59, 5, 605-630 (2009), (Nov) · Zbl 1232.92054
[33] Jones, M. A.; Song, B.; Thomas, D. M., Controlling wound healing through debridement, Math. Comput. Modell., 40, 9-10, 1057-1064 (2004), (Nov) · Zbl 1061.92036
[34] Kanda, N.; Watanabe, S., Regulatory roles of sex hormones in cutaneous biology and immunology, J. Dermatol. Sci., 38, 1, 1-7 (2005), (Apr)
[35] Kuehn, B. M., Chronic wound care guidelines issued, JAMA, 297, 9, 938-939 (2007), (Mar)
[36] Kumar, V.; Sharma, A., Neutrophils: Cinderella of innate immune system, Int. Immunopharmacol., 10, 11, 1325-1334 (2010), (Nov)
[37] Leibovich, S. J.; Ross, R., The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum, Am. J. Pathol., 78, 1, 71-100 (1975)
[38] Marino, S.; Hogue, I. B.; Ray, C. J.; Kirschner, D. E., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254, 1, 178-196 (2008), (Sep) · Zbl 1400.92013
[39] Menke, N. B.; Cain, J. W.; Reynolds, A.; Chan, D. M.; Segal, R. A.; Witten, T. M., An in silico approach to the analysis of acute wound healing, Wound Repair Regen., 18, 1, 105-113 (2010)
[40] Meszaros, A. J.; Reichner, J. S.; Albina, J. E., Macrophage phagocytosis of wound neutrophils, J. Leukocyte Biol., 65, 1, 35-42 (1999)
[41] Mi, Q.; Rivière, B.; Clermont, G.; Steed, D. L.; Vodovotz, Y., Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-β1, Wound Repair Regen., 15, 5, 671-682 (2007)
[42] Mosser, D. M.; Edwards, J. P., Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol, 8, 12, 958-969 (2008), (Dec)
[43] Padgett, D. A.; Glaser, R., How stress influences the immune response, Trends Immunol., 24, 8, 444-448 (2003)
[44] Padgett, D. A.; Marucha, P. T.; Sheridan, J. F., Restraint stress slows cutaneous wound healing in mice, Brain Behav. Immun., 12, 1, 64-73 (1998), (Mar)
[45] Park, J. E.; Barbul, A., Understanding the role of immune regulation in wound healing, Am. J. Surg., 187, 5, Suppl. 1, S11-S16 (2004)
[46] Reynolds, A.; Rubin, J.; Clermont, G.; Day, J.; Vodovotz, Y.; Bard Ermentrout, G., A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation, J. Theor. Biol., 242, 1, 220-236 (2006), (Sep) · Zbl 1441.92013
[47] Ross, R., Wound healing, Sci. Am., 220, 6, 40-50 (1969)
[48] Routley, C. E.; Ashcroft, G. S., Effect of estrogen and progesterone on macrophage activation during wound healing, Wound Repair Regen., 17, 1, 42-50 (2009), (Feb)
[49] Schugart, R. C.; Friedman, A.; Zhao, R.; Sen, C. K., Wound angiogenesis as a function of tissue oxygen tension: a mathematical model, Proc. Natl. Acad. Sci. U.S.A, 105, 7, 2628-2633 (2008), (Feb)
[50] Segal, R. A.; Diegelmann, R. F.; Ward, K. R.; Reynolds, A., A differential equation model of collagen accumulation in a healing wound, Bull. Math. Biol., 74, 9, 2165-2182 (2012) · Zbl 1256.92027
[51] Sen, C. K.; Gordillo, G. M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T. K., Human skin wounds: a major and snowballing threat to public health and the economy, Wound Repair Regen., 17, 6, 763-771 (2009), (Dec)
[52] Sheridan, J. F.; Padgett, D. A.; Avitsur, R.; PTD., Marucha, Experimental models of stress and wound healing, World J. Surg., 28, 3, 327-330 (2004), (Mar 1)
[53] Sherratt, J. A.; Dallon, J. C., Theoretical models of wound healing: past successes and future challenges, C. R. Biol., 325, 5, 557-564 (2002)
[54] Sherratt, J. A.; Murray, J. D., Models of epidermal wound healing, Proc. R. Soc. London, Ser. B, 241, 1300, 29-36 (1990), (Jul)
[55] Shilov, Y. I.; Orlova, E. G., Adrenergic regulation of phagocytic activity of peripheral blood neutrophils, monocytes, and eosinophils in stressed rats, Bull. Exp. Biol. Med., 129, 5, 477-479 (2000)
[56] Simpson, D. M.; Ross, R., The neutrophilic leukocyte in wound repair, J. Clin. Invest.. J. Clin. Invest., 1, 5, 8, 2009-2023 (1972)
[57] Soehnlein, O.; Zernecke, A.; Eriksson, E. E.; Rothfuchs, A. G.; Pham, C. T.; Herwald, H., Neutrophil secretion products pave the way for inflammatory monocytes, Blood, 112, 4, 1461-1471 (2008), (Aug)
[58] Strickland, I.; Kisich, K.; Hauk, P. J.; Vottero, A.; Chrousos, G. P.; Klemm, D. J., High constitutive glucocorticoid receptor β in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids, J. Exp. Med., 193, 5, 585-594 (2001), (Mar)
[59] Vermolen, F. J.; Javierre, E., A finite-element model for healing of cutaneous wounds combining contraction, angiogenesis and closure, J. Math. Biol., 65, 5, 967-996 (2012), (Nov) · Zbl 1256.92030
[60] Weiss, S. J., Tissue destruction by neutrophils, N. Engl. J. Med., 320, 6, 365-376 (1989)
[61] Whitelaw, D. M.; Bell, M., The intravascular lifespanof monocytes, Blood, 28, 3, 455-464 (1966), (Sep)
[62] Witte, M. B.; Barbul, A., General principles of wound healing, Surg. Clin. North Am., 77, 3, 509-528 (1997), (Jun)
[63] Ziraldo, C.; Mi, Q.; An, G.; Vodovotz, Y., Computational modeling of inflammation and wound healing, Adv. Wound Care (New Rochelle), 2, 9, 527-537 (2013), (Nov)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.