×

A mathematical model for wound healing in the reef-building coral Pocillopora damicornis. (English) Zbl 07902705

Summary: Coral reefs, among the most diverse ecosystems on Earth, currently face major threats from pollution, unsustainable fishing practices , and perturbations in environmental parameters brought on by climate change. Corals also sustain regular wounding from other sea life and human activity. Recent reef restoration practices have even involved intentional wounding by systematically breaking coral fragments and relocating them to revitalize damaged reefs, a practice known as microfragmentation. Despite its importance, very little research has explored the inner mechanisms of wound healing in corals. Some reef-building corals have been observed to initiate an immunological response to wounding similar to that observed in mammalian species. Utilizing prior models of wound healing in mammalian species as the mathematical basis, we formulated a mechanistic model of wound healing, including observations of the immune response and tissue repair in scleractinian corals for the species Pocillopora damicornis. The model consists of four differential equations which track changes in remaining wound debris, number of cells involved in inflammation, number of cells involved in proliferation, and amount of wound closure through re-epithelialization. The model is fit to experimental wound size data from linear and circular shaped wounds on a live coral fragment. Mathematical methods, including numerical simulations and local sensitivity analysis, were used to analyze the resulting model. The parameter space was also explored to investigate drivers of other possible wound outcomes. This model serves as a first step in generating mathematical models for wound healing in corals that will not only aid in the understanding of wound healing as a whole, but also help optimize reef restoration practices and predict recovery behavior after major wounding events.

MSC:

92C32 Pathology, pathophysiology
92-10 Mathematical modeling or simulation for problems pertaining to biology

Software:

Matlab
Full Text: DOI

References:

[1] Antonelli, P. L.; Rutz, S. F.; Sammarco, P. W.; Strychar, K. B., A coral bleaching model, Nonlinear Anal. Real World Appl., 16, 65-73, 2014 · Zbl 1292.93012
[2] Aqua Illumination, \(2023. \operatorname{Prime}^{T M} 16\) HD Reef. Bethlehem, PA, USA, URL https://www.aquaillumination.com/products/prime.
[3] Arciero, J. C.; Mi, Q.; Branca, M. F.; Hackam, D. J.; Swigon, D., Continuum model of collective cell migration in wound healing and colony expansion, Biophys. J., 100, 3, 535-543, 2011
[4] Arenas Gómez, C. M.; Sabin, K. Z.; Echeverri, K., Wound healing across the animal kingdom: crosstalk between the immune system and the extracellular matrix, Dev. Dyn., 249, 7, 834-846, 2020
[5] Baskett, M. L.; Gaines, S. D.; Nisbet, R. M., Symbiont diversity may help coral reefs survive moderate climate change, Ecol. Appl., 19, 1, 3-17, 2009, arXiv:https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/08-0139.1 URL https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/08-0139.1
[6] Bhattacharyya, J.; Pal, S., Hysteresis in coral reefs under macroalgal toxicity and overfishing, J. Biol. Phys., 41, 151-172, 2015, URL https://link.springer.com/content/pdf/10.1007/s10867-014-9371-y.pdf
[7] Blackwood, J. C.; Hastings, A.; Mumby, P. J., A model-based approach to determine the long-term effects of multiple interacting stressors on coral reefs, Ecol. Appl., 21, 7, 2722-2733, 2011, arXiv:https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/10-2195.1 URL https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/10-2195.1
[8] Bonesso, J. L.; Leggat, W.; Ainsworth, T. D., Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury, PeerJ, 5, Article e3719 pp., 2017
[9] Brun, R.; Reichert, P.; Künsch, H. R., Practical identifiability analysis of large environmental simulation models, Water Resour. Res., 37, 4, 1015-1030, 2001
[10] Burke, L.; Reytar, K.; Spalding, M.; Perry, A., Reefs at Risk Revisited, 2011, World Resources Institute: World Resources Institute Washington, DC
[11] Bythell, J.; Bythell, M.; Gladfelter, E., Initial results of a long-term coral reef monitoring program: impact of hurricane hugo at buck island reef national monument, st. Croix US virgin islands, J. Exp. Mar. Biol. Ecol., 172, 1-2, 171-183, 1993
[12] Bythell, J. C.; Hillis-Starr, Z. M.; Rogers, C. S., Local variability but landscape stability in coral reef communities following repeated hurricane impacts, Mar. Ecol. Prog. Ser., 204, 93-100, 2000
[13] Cooper, R. L.; Segal, R. A.; Diegelmann, R. F.; Reynolds, A. M., Modeling the effects of systemic mediators on the inflammatory phase of wound healing, J. Theoret. Biol., 367, 86-99, 2015, URL https://www.sciencedirect.com/science/article/pii/S0022519314006511 · Zbl 1412.92047
[14] Counsell, C. W.; Johnston, E. C.; Sale, T. L., Colony size and depth affect wound repair in a branching coral, Mar. Biol., 166, 1-12, 2019
[15] Cukjati, D.; Reberŝek, S.; Karba, R.; Miklavĉiĉ, D., Modelling of chronic wound healing dynamics, Med. Biol. Eng. Comput., 38, 339-347, 2000
[16] Cumming, R., Tissue injury predicts colony decline in reef-building corals, Mar. Ecol. Prog. Ser., 242, 131-141, 2002
[17] Domart-Coulon, I. J.; Elbert, D. C.; Scully, E. P.; Calimlim, P. S.; Ostrander, G. K., Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, pocillopora damicornis, Proc. Natl. Acad. Sci., 98, 21, 11885-11890, 2001
[18] Donner, S. D.; Potere, D., The inequity of the global threat to coral reefs, BioScience, 57, 3, 214-215, 2007, arXiv:https://academic.oup.com/bioscience/article-pdf/57/3/214/26898687/57-3-214.pdf
[19] Edmunds, P. J.; Witman, J. D., Effect of hurricane hugo on the primary framework of a reef along the south shore of st. John, US virgin islands, Mar. Ecol. Prog. Ser. Oldendorf, 78, 2, 201-204, 1991
[20] Fang, L.-S.; Shen, P., A living mechanical file: the burrowing mechanism of the coral-boring bivalve lithophaga nigra, Mar. Biol., 97, 3, 349-354, 1988
[21] Friedman, A.; Xue, C., A mathematical model for chronic wounds, Math. Biosci. Eng.: MBE, 8, 2, 253, 2011 · Zbl 1259.92043
[22] Fritz Aquatics, Fritzpro RPM salt mix mesquite TX USA, 2023, https://fritzaquatics.com/products/fritz-rpm-reef-pro-mix
[23] George Broughton, I.; Janis, J. E.; Attinger, C. E., The basic science of wound healing, Plast. Reconstr. Surg., 117, 7S, 12S-34S, 2006
[24] Hughes, T. P.; Anderson, K. D.; Connolly, S. R.; Heron, S. F.; Kerry, J. T.; Lough, J. M.; Baird, A. H.; Baum, J. K.; Berumen, M. L.; Bridge, T. C., Spatial and temporal patterns of mass bleaching of corals in the Anthropocene, Science, 359, 6371, 80-83, 2018
[25] Kawamura, K.; Nishitsuji, K.; Shoguchi, E.; Fujiwara, S.; Satoh, N., Establishing sustainable cell lines of a coral, acropora tenuis, Mar. Biotechnol., 23, 3, 373-388, 2021
[26] Kirsner, R. S.; Eaglstein, W. H., The wound healing process, Dermatol. Clin., 11, 4, 629-640, 1993
[27] Koppenol, D. C.; Vermolen, F. J.; Niessen, F. B.; van Zuijlen, P. P.; Vuik, K., A biomechanical mathematical model for the collagen bundle distribution-dependent contraction and subsequent retraction of healing dermal wounds, Biomech. Model. Mechanobiol., 16, 345-361, 2017
[28] Laverick, J. H.; Tamir, R.; Eyal, G.; Loya, Y., A generalized light-driven model of community transitions along coral reef depth gradients, Global Ecol. Biogeogr., 29, 9, 1554-1564, 2020, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/geb.13140
[29] Li, X.; Wang, H.; Zhang, Z.; Hastings, A., Mathematical analysis of coral reef models, J. Math. Anal. Appl., 416, 1, 352-373, 2014 · Zbl 1368.92148
[30] Lunetta, G. D., Wound repair in the marine worm sipunculus nudus (sipunculidae), Invertebr. Surviv. J., 2, 2, 124-131, 2005
[31] Marino, S.; Hogue, I. B.; Ray, C. J.; Kirschner, D. E., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theoret. Biol., 254, 1, 178-196, 2008 · Zbl 1400.92013
[32] McCook, G. D.-P. L.J., The fate of bleached corals: patterns and dynamics of algal recruitment, Mar. Ecol. Prog. Ser., 232, 115-128, 2002
[33] McDougall, S.; Dallon, J.; Sherratt, J.; Maini, P., Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications, Phil. Trans. R. Soc. A, 364, 1843, 1385-1405, 2006
[34] McKay, M. D.; Beckman, R. J.; Conover, W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 42, 1, 55-61, 2000
[35] Menke, N. B.; Cain, J. W.; Reynolds, A.; Chan, D. M.; Segal, R. A.; Witten, T. M.; Bonchev, D. G.; Diegelmann, R. F.; Ward, K. R.; Virginia, T. W.H. G., Commonwealth university reanimation, engineering shock center, an in silico approach to the analysis of acute wound healing, Wound Repair Regener., 18, 1, 105-113, 2010
[36] Mi, Q.; Rivière, B.; Clermont, G.; Steed, D. L.; Vodovotz, Y., Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-\( \beta 1\), Wound Repair Regener., 15, 5, 671-682, 2007
[37] Morrison, T. H.; Hughes, T. P.; Adger, W. N.; Brown, K.; Barnett, J.; Lemos, M. C., Save reefs to rescue all ecosystems, 2019
[38] Mumby, P. J., The impact of exploiting grazers (Scaridae]) on the dynamics of caribbean coral reefs, Ecol. Appl., 16, 2, 747-769, 2006, arXiv:https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/1051-0761
[39] Muscatine, L.; Porter, J. W., Reef corals: mutualistic symbioses adapted to nutrient-poor environments, Bioscience, 27, 7, 454-460, 1977
[40] National Oceanic and Atmospheric Administration, Coral reef ecosystems, 2019, URL https://www.noaa.gov/education/resource-collections/marine-life/coral-reef-ecosystems
[41] Nieves-González, A.; Ruiz-Diaz, C. P.; Toledo-Hernández, C.; Ramírez-Lugo, J. S., A mathematical model of the interactions between acropora cervicornis and its environment, Ecol. Model., 406, 7-22, 2019, URL https://www.sciencedirect.com/science/article/pii/S0304380019301413
[42] Page, C. A.; Muller, E. M.; Vaughan, D. E., Microfragmenting for the successful restoration of slow growing massive corals, Ecol. Eng., 123, 86-94, 2018
[43] Palmer, C. V.; Traylor-Knowles, N. G.; Willis, B. L.; Bythell, J. C.; 10.1371/journal.pone, DOI:., 0023992[Corals use similar immune cells and wound-healing processes as those of higher organisms, PLoS One, 6, 8, 1-11, 2011
[44] Pörtner, H.-O., Roberts, D.C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R.A., Betts, R., Kerr, R.B., Biesbroek, R., et al., 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC Sixth Assessment Report.
[45] Ramirez-Zuniga, I.; Rubin, J. E.; Swigon, D.; Clermont, G., Mathematical modeling of energy consumption in the acute inflammatory response, J. Theoret. Biol., 460, 101-114, 2019 · Zbl 1406.92114
[46] Rasband, W. S., ImageJ, 1997, National Institutes of Health: National Institutes of Health Bethesda, Maryland, USA, https://imagej.nih.gov/ij/
[47] Reynolds, A.; Rubin, J.; Clermont, G.; Day, J.; Vodovotz, Y.; Bard Ermentrout, G., A reduced mathematical model of the acute inflammatory response: I. derivation of model and analysis of anti-inflammation, J. Theoret. Biol., 242, 1, 220-236, 2006, URL https://www.sciencedirect.com/science/article/pii/S0022519306000816 · Zbl 1441.92013
[48] Rinkevich, B., Cell cultures from marine invertebrates: new insights for capturing endless stemness, Mar. Biotechnol., 13, 345-354, 2011
[49] Robson, M. C.; Steed, D. L.; Franz, M. G., Wound healing: biologic features and approaches to maximize healing trajectories, Curr. Probl. Surg., 38, 2, 72-140, 2001
[50] Rodrigues, M.; Kosaric, N.; Bonham, C. A.; Gurtner, G. C., Wound healing: a cellular perspective, Physiol. Rev., 99, 1, 665-706, 2019
[51] Rodríguez-Villalobos, J. C.; Work, T. M.; Calderon-Aguilera, L. E., Wound repair in pocillopora, J. Invertebr. Pathol., 139, 1-5, 2016
[52] Roger, L.; Darko, Y.; Bernas, T.; White, F.; Olaosebikan, M.; Cowen, L.; Klein-Seetharaman, J.; Lewinski, N., Evaluation of fluorescence-based viability stains in cells dissociated from scleractinian coral pocillopora damicornis, Sci. Rep., 12, 15297, 2022
[53] Roger, L. M.; Reich, H. G.; Lawrence, E.; Li, S.; Vizgaudis, W.; Brenner, N.; Kumar, L.; Klein-Seetharaman, J.; Yang, J.; Putnam, H. M., Applying model approaches in non-model systems: A review and case study on coral cell culture, PLoS One, 16, 4, Article e0248953 pp., 2021
[54] Rohwer, F.; Seguritan, V.; Azam, F.; Knowlton, N., Diversity and distribution of coral-associated bacteria, Mar. Ecol. Prog. Ser., 243, 1-10, 2002
[55] Rosental, B.; Kozhekbaeva, Z.; Fernhoff, N.; Tsai, J. M.; Traylor-Knowles, N., Coral cell separation and isolation by fluorescence-activated cell sorting (FACS), BMC Cell Biol., 18, 1-12, 2017
[56] Rotjan, R. D.; Lewis, S. M., Impact of coral predators on tropical reefs, Mar. Ecol. Prog. Ser., 367, 73-91, 2008
[57] Schugart, R. C.; Friedman, A.; Zhao, R.; Sen, C. K., Wound angiogenesis as a function of tissue oxygen tension: a mathematical model, Proc. Natl. Acad. Sci., 105, 7, 2628-2633, 2008
[58] Segal, R. A.; Diegelmann, R. F.; Ward, K. R.; Reynolds, A., A differential equation model of collagen accumulation in a healing wound, Bull. Math. Biol., 74, 9, 2165-2182, 2012 · Zbl 1256.92027
[59] Snyder, G. A.; Browne, W. E.; Traylor-Knowles, N.; Rosental, B., Fluorescence-Activated Cell Sorting for the Isolation of Scleractinian Cell Populations, 2016, MyJoVE Corporation
[60] Stamm, A.; Reimers, K.; Strauß, S.; Vogt, P.; Scheper, T.; Pepelanova, I., In vitro wound healing assays-state of the art, BioNanoMaterials, 17, 1-2, 79-87, 2016
[61] Sully, S.; van Woesik, R., Turbid reefs moderate coral bleaching under climate-related temperature stress, Glob. Change Biol., 26, 3, 1367-1373, 2020, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.14948 URL https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14948
[62] Tettamanti, G.; Grimaldi, A.; Rinaldi, L.; Arnaboldi, F.; Congiu, T.; Valvassori, R.; De Eguileor, M., The multifunctional role of fibroblasts during wound healing in hirudo medicinalis (annelida, hirudinea), Biol. Cell, 96, 6, 443-455, 2004
[63] The MathWorks Inc., 2021. MATLAB 9.10.0.1739362 (R 2021a) Update 5. Natick, Massachusetts.
[64] Thompson, J. R.; Rivera, H. E.; Closek, C. J.; Medina, M., Microbes in the coral holobiont: partners through evolution, development, and ecological interactions, Front. Cell. Infect. Microbiol., 4, 176, 2015
[65] Torres, M., Determination of optimal parameter estimates for medical interventions in human metabolism and inflammation, 2019
[66] Torres, M.; Wang, J.; Yannie, P. J.; Ghosh, S.; Segal, R. A.; Reynolds, A. M.; 10.1371/journal.pcbi, DOI:., 1007172[Identifying important parameters in the inflammatory process with a mathematical model of immune cell influx and macrophage polarization, PLoS Comput. Biol., 15, 7, 1-27, 2019
[67] Traylor-Knowles, N., Distinctive wound-healing characteristics in the corals pocillopora damicornis and acropora hyacinthus found in two different temperature regimes, Mar. Biol., 163, 1-6, 2016
[68] Traylor-Knowles, N., Heat stress compromises epithelial integrity in the coral, acropora hyacinthus, PeerJ, 7, Article e6510 pp., 2019
[69] Velnar, T.; Bailey, T.; Smrkolj, V., The wound healing process: an overview of the cellular and molecular mechanisms, J. Int. Med. Res., 37, 5, 1528-1542, 2009
[70] Wilkinson, H. N.; Hardman, M. J., Wound healing: cellular mechanisms and pathological outcomes, Open Biol., 10, 9, Article 200223 pp., 2020
[71] Witte, M. B.; Barbul, A., General principles of wound healing, Surg. Clin. N. Am., 77, 3, 509-528, 1997
[72] van Woesik, R.; Randall, C. J., Coral disease hotspots in the Caribbean], Ecosphere, 8, 5, Article e01814 pp., 2017, arXiv:https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecs2.1814 URL https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecs2.1814
[73] Yussof, S. J.M.; Omar, E.; Pai, D. R.; Sood, S., Cellular events and biomarkers of wound healing, Indian J. Plast. Surg., 45, 02, 220-228, 2012
[74] Ziraldo, C.; Mi, Q.; An, G.; Vodovotz, Y., Computational modeling of inflammation and wound healing, Adv. Wound Care, 2, 9, 527-537, 2013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.