×

A topological investigation of the quantum adiabatic phase. (English) Zbl 0625.55014

Using algebraic topology the appearance of the quantum adiabatic phase over various parameter manifolds is investigated. The relation with nontrivial gauge bundles (both abelian and nonabelian) is studied and it is shown that the phase appears as a result of homotopically nontrivial mappings, induced by the Hamiltonian in the space of wave-functions. The cohomological picture is developed and some topological considerations concerning field theory anomalies in the Hamiltonian picture are presented. A proof of the Nielsen-Ninomiya theorem is given inspired from the notion of the adiabatic phase.

MSC:

55S40 Sectioning fiber spaces and bundles in algebraic topology
53C05 Connections (general theory)
81T20 Quantum field theory on curved space or space-time backgrounds
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] Berry, M.: Proc. R. Soc. Lond. A392, 45 (1984)
[2] Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett.51, 2167 (1983) · doi:10.1103/PhysRevLett.51.2167
[3] Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett.52, 2111 (1984) · doi:10.1103/PhysRevLett.52.2111
[4] Moody, J., Shapere, A., Wilczek, F.: ITP preprint NSF-ITP-85-78
[5] Kuratsuji, H., Iida, S.: Kyoto, Univ. preprint, KUNS-770
[6] Nelson, P., Alvarez-Gaum? L.: Hamiltonian interpretation of anomalies. Commun. Math. Phys.99, 103 (1985) · Zbl 0584.58048 · doi:10.1007/BF01466595
[7] Sonoda, H.: The Wess-Zumino term and the Hamiltonian formulation for anomalies. Phys. Lett.156B, 220 (1985)
[8] Sonoda H.: Berry’s phase in chiral gauge theories. Nucl. Phys. B266, 410 (1986) · doi:10.1016/0550-3213(86)90097-0
[9] Niemi, A.J., Semenoff, G.W.: Quantum holonomy and the chiral gauge anomaly. Phys. Rev. Lett.55, 927 (1985) · doi:10.1103/PhysRevLett.55.927
[10] Steenrod, N.: The topology of fibre bundles. Princeton, NJ: Princeton University Press 1951 · Zbl 0054.07103
[11] Whitehead, G.: Elements of homotopy theory. Berlin, Heidelberg, New York: Springer 1978 · Zbl 0406.55001
[12] Nielsen, H.B., Ninomiya, M.: Absence of neutrinos on a lattice (I). Proof by homotopy theory. Nucl. Phys. B185, 20 (1981) · doi:10.1016/0550-3213(81)90361-8
[13] Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett.49, 405 (1982) · doi:10.1103/PhysRevLett.49.405
[14] Avron, J.E., Seiler, R., Simon, B.: Homotopy and quantization in condensed matter physics. Phys. Rev. Lett.51, 51 (1983) · doi:10.1103/PhysRevLett.51.51
[15] Alvarez-Gaum?, L., Ginsparg, P.: The topological meaning of non-abelian anomalies. Nucl. Phys. B243, 449 (1984) · doi:10.1016/0550-3213(84)90487-5
[16] Feng, Jn, Preskill, J.: Caltech preprint CALT-68-1278
[17] Witten, E.: AnSU(2) anomaly. Phys. Lett.117B, 324 (1982)
[18] Witten, E.: Talk at the: Symposium on anomalies, geometry and topology.
[19] Bardeen, W.A., White, A.R. (eds.): Global gravitational anomalies. Commun. Math. Phys.100, 197 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.