×

Some generalized Clifford-Jacobi polynomials and associated spheroidal wavelets. (English) Zbl 1538.42080

Summary: In the present paper, by extending some fractional calculus to the framework of Clifford analysis, new classes of wavelet functions are presented. Firstly, some classes of monogenic polynomials are provided based on 2-parameters weight functions which extend the classical Jacobi ones in the context of Clifford analysis. The discovered polynomial sets are next applied to introduce new wavelet functions. Reconstruction formula as well as Fourier-Plancherel rules have been proved. The main tool reposes on the extension of fractional derivatives, fractional integrals and fractional Fourier transforms to Clifford analysis.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
26A33 Fractional derivatives and integrals
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
44A15 Special integral transforms (Legendre, Hilbert, etc.)
30G35 Functions of hypercomplex variables and generalized variables

References:

[1] R. Abreu-Blaya, J. Bory-Reyes and P. Bosch, Extension theorem for complex clifford algebras-valued functions on fractal domains, Boundary Value Problems, (2010), Article ID 513186. · Zbl 1196.30044
[2] J.-P. Antoine, R. Murenzi and P. Vandergheynst, Two-dimensional directional wavelets in image processing, Int. J. Imag. Syst.Tech., 7(3) (1996), 152-165.
[3] D. Baleanu, Fractional Calculus: Models and Numerical Methods, Volume 3, World Sci-entfic, 2012. · Zbl 1248.26011
[4] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Publication, 1982. · Zbl 0529.30001
[5] F. Brackx, N. De Schepper and F. Sommen, The Clifford-Laguerre continuous wavelet trans-form, Bull. Belg. Math. Soc., 10 (2003), 201-215. · Zbl 1077.42026
[6] F. Brackx, N. De Schepper and F. Sommen, The Clifford-Gegenbauer polynomials and the associated continuous wavelet transform, Integ. Transf. Special Functions, 15(5) (2004), 387-404. · Zbl 1062.30057
[7] F. Brackx, N. De Schepper and F. Sommen, Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space, Int. J. Math. Math. Sci., 52 (2004), 2761-2772. · Zbl 1126.30029
[8] F. Brackx, N. De Schepper and F. Sommen, The two-dimensional Clifford-Fourier transform, J. Math. Imag., 26 (2006), 5-18. · Zbl 1122.42016
[9] F. Brackx, N. De Schepper and F. Sommen, Clifford-Jacobi Polynomials and the associated continuous wavelet transform in Eucllidean space, Tao Qian, Mang I. Vai and Xu Yuesheng, Eds, Applied and Numerical Harmonic Analysis, (2006), pp. 185-198. · Zbl 1110.42008
[10] F. Brackx, N. De Schepper and F. Sommen, The Fourier transform in clifford analysis, Adv. Imag. Electron. Phys., 156 (2009), 55-201.
[11] M. J. Craddock and J. A. Hogan, The fractional Clifford-Fourier kernel, The Erwin Schrödinger International Institute for Mathematical Physics ESI, Vienna, Preprint ESI 2411 (2013), 27 pages.
[12] S. Das, Functional Fractional Calculus, Springer, 2011. · Zbl 1225.26007
[13] R. Delanghe, Clifford analysis: history and perspective, Comput. Methods Function Theory, 1(1) (2001), 107-153. · Zbl 1011.30045
[14] F. Dubois, A-C. Galucio and N. Point, Introductionà la dérivation fractionnaire Théorie et applications. Coursà l’Institut Supérieur d’Education au Cap Vert, Avril 2007, 34 pages.
[15] H. De Bie, Clifford algebras, Fourier transforms and quantum mechanics, arXiv: 1209.6434v1, September 2012, 39 pages.
[16] H. De Bie and N. De Schepper, The fractional Clifford-Fourier transform, Complex Anal. Operator Theory, 6(5) (2012), 1047-1067. · Zbl 1322.30018
[17] H. De Bie and Y. Xu, On the Clifford-Fourier transform, ArXiv:1003.0689, December 2010.
[18] N. De Schepper, The generalized Clifford-Gegenbauer polynomials revisited, Adv. Appl. Clifford Alg., 19 (2009), 253-268. · Zbl 1167.42009
[19] B.-Y. Guo, J. Shen and L.-L. Wang, Generalized Jacobi polynomials/functions and their ap-plications, Appl. Numer. Math., 59 (2009), 1011-1028. · Zbl 1171.33006
[20] E. Hitzer and S. J. Sangwine, Quaternion and clifford Fourier transforms and wavelets, Eck-hard Hitzer Stephen J. Sangwine Editors, Trends in Mathematics, Birkhauser, Springer Basel, 2013. · Zbl 1268.00016
[21] A. F. Horadam, Gegenbauer polynomials revisited, The Fibonacci Quarterly, 23(4) (1985), 294-299. · Zbl 0589.10016
[22] R. Janin, Dérivées et Intégrales Non Entières, Document de Travail, Groupe de travail: Anal-yse et physique mathématique Laboratoire LMNO de Caen, Janvier 2013.
[23] U. Kähler and N. Vieira, Fractional Clifford Analyis, Hypercomplex Analysis: New Perspec-tives and Applications, Trends in Mathematics, 191-201, Springer International Publishing, Switzerland, 2014. · Zbl 1314.30104
[24] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6(4) (2014), 1-15. · Zbl 1317.26008
[25] A. A. Kilbas, H. A. Srivastava and J. I. Trujillo, Theory and applications of fractional differ-ential equations, North-Holland Mathematics Studies 204, Editor: Jan van Mill, Faculteit der Exacte Wetenschappen, Amsterdam, The Netherlands, 2006. · Zbl 1092.45003
[26] S. Lehar, Clifford Algebra: a visual introduction, A topnotch WordPress.com site, (2014).
[27] A. F. Moreno, F. Marcellan and B. P. Osilenker, Estimates for polynomials orthogonal with respect to some Gegenbauer-Sobolev type inner product, J. Inequa. Appl., 3 (1999), 401-419. · Zbl 0935.42014
[28] M. D. Ortigueira, and J. A. Tenreiro Machado, What is a fractional derivative, J. Comput. Phys., 293 (2015), 4-13. · Zbl 1349.26016
[29] D. P. Pena, Cauchy-Kowalevski Extensions, Fueter’S Theorems and Boundary Values of Spe-cial Systems in Clifford Analysis, a PhD thesis in Mathematics, Ghent University, 2008.
[30] B. Ross, Fractional Calculus and Its Applications, Springer Berlin, 1975. · Zbl 0293.00010
[31] J. Sabatier, Om P. Agrawal, and J. A. Tenreiro Machado, Advances in Fractional Calculus, Springer, 2007. · Zbl 1116.00014
[32] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives The-ory and Applications, Gordon and Breach Science Publisher, Amsterdam, The Netherlands, 1993. · Zbl 0818.26003
[33] E. Scalas, R. Goreflo, and F. Mainardi, Fractional calculus and continuous-time finance, Phys-ica A: Statistical Mechanics and Its Applications, 284(1) (2000), 376-384.
[34] E. M. Stein and G. Weiss, Introduction to Fourier Analysis On Euclidean Spaces, Princeton, New Jersey Princeton University Press, 1971. · Zbl 0232.42007
[35] V. E. Tarasov, No violation of the leibniz rule. no fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 18(11) (2013), 2945-2948. · Zbl 1329.26015
[36] V. V. Uchaikin, V. V. Uchaikin, and V. V Uchaikin, Fractional Derivatives for Physicists and Engineers, Springer, 2013. · Zbl 1312.26002
[37] N. Vieira, Cauchy-Kovalevskaya extension theorem in fractional Clifford analysis, Complex Anal. Operator Theor., 9(5) (2015), 1089-1109. · Zbl 1348.30031
[38] X. Wang, On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions, Center of Chaos and Complex Network, Department of Electronic Engineering, City University of Hong Kong, Reprint, 2014.
[39] X. Wang, Fractional geometric calculus: toward a unified mathematical language for physics and engineering, Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications (FDA2012), Hohai University, Nanjing, 2012.
[40] J. Winkler, A uniqueness theorem for monogenic functions, Annales Academiae Scientiarum Fennicae, Series A. I. Mathematica, 18 (1993), 105-116. · Zbl 0784.30031
[41] X.-J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science, New York, NY, USA, 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.