×

Structure-preserving model order reduction of Hamiltonian systems. (English) Zbl 1535.65251

Beliaev, Dmitry (ed.) et al., International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 7. Sections 15–20. Berlin: European Mathematical Society (EMS). 5072-5097 (2023).
Summary: We discuss the recent developments of projection-based model order reduction (MOR) techniques targeting Hamiltonian problems. Hamilton’s principle completely characterizes many high-dimensional models in mathematical physics, resulting in rich geometric structures, with examples in fluid dynamics, quantum mechanics, optical systems, and epidemiological models. MOR reduces the computational burden associated with the approximation of complex systems by introducing low-dimensional surrogate models, enabling efficient multiquery numerical simulations. However, standard reduction approaches do not guarantee the conservation of the delicate dynamics of Hamiltonian problems, resulting in reduced models plagued by instability or accuracy loss over time. By approaching the reduction process from the geometric perspective of symplectic manifolds, the resulting reduced models inherit stability and conservation properties of the high-dimensional formulations. We first introduce the general principles of symplectic geometry, including symplectic vector spaces, Darboux’ theorem, and Hamiltonian vector fields. These notions are then used as a starting point to develop different structure-preserving reduced basis (RB) algorithms, including SVD-based approaches, and greedy techniques. We conclude the review by addressing the reduction of problems that are not linearly reducible or in a noncanonical Hamiltonian form.
For the entire collection see [Zbl 1532.00041].

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
70H15 Canonical and symplectic transformations for problems in Hamiltonian and Lagrangian mechanics
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
15A18 Eigenvalues, singular values, and eigenvectors
65F20 Numerical solutions to overdetermined systems, pseudoinverses

References:

[1] B. M. Afkham and J. S. Hesthaven, Structure preserving model reduction of parametric Hamiltonian systems. SIAM J. Sci. Comput. 39 (2017), no. 6, A2616-A2644. · Zbl 1379.78019
[2] B. M. Afkham and J. S. Hesthaven, Structure-preserving model-reduction of dissi-pative Hamiltonian systems. J. Sci. Comput. 81 (2019), no. 1, 3-21. · Zbl 1433.37074
[3] B. M. Afkham, N. Ripamonti, Q. Wang, and J. S. Hesthaven, Conservative model order reduction for fluid flow. In Quantification of Uncertainty: Improving Effi-ciency and Technology, 67-99, Lect. Notes Comput. Sci. Eng. 137, Springer, Cham, 2020. · Zbl 1455.62226
[4] S. Ahmed, On theoretical and numerical aspects of symplectic Gram-Schmidt-like algorithms. Numer. Algorithms 39 (2005), no. 4, 437-462. · Zbl 1111.65038
[5] F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza, Supremizer stabiliza-tion of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Internat. J. Numer. Methods Engrg. 102 (2015), no. 5, 1136-1161. · Zbl 1352.76039
[6] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk, Con-vergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011), no. 3, 1457-1472. · Zbl 1229.65193
[7] P. Buchfink, A. Bhatt, and B. Haasdonk, Symplectic model order reduction with non-orthonormal bases. Math. Comput. Appl. 24 (2019), no. 2, 43.
[8] P. Buchfink, B. Haasdonk, and S. Rave, PSD-greedy basis generation for structure-preserving model order reduction of Hamiltonian systems. In Proceedings of ALGORITMY, pp. 151-160, Spektrum STU, 2020.
[9] A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme, and G. Turinici, A priori con-vergence of the Greedy algorithm for the parametrized reduced basis method. ESAIM Math. Model. Numer. Anal. 46 (2012), no. 3, 595-603. · Zbl 1272.65084
[10] A. Bunse-Gerstner, Matrix factorizations for symplectic QR-like methods. Linear Algebra Appl. 83 (1986), 49-77. · Zbl 0616.65042
[11] K. Carlberg, Y. Choi, and S. Sargsyan, Conservative model reduction for finite-volume models. J. Comput. Phys. 371 (2018), 280-314. · Zbl 1415.65208
[12] W. G. Cochran, Sampling techniques. John Wiley & Sons, 2007.
[13] G. Darboux, Sur le probleme de Pfaff. Bull. Sci. Math. Astron. 6 (1882), no. 1, 14-36.
[14] P. Feldmann and R. W. Freund, Efficient linear circuit analysis by Padé approxi-mation via the Lanczos process. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 14 (1995), no. 5, 639-649.
[15] F. Feppon and P. F. Lermusiaux, A geometric approach to dynamical model order reduction. SIAM J. Matrix Anal. Appl. 39 (2018), no. 1, 510-538. · Zbl 1395.65111
[16] L. Fick, Y. Maday, A. T. Patera, and T. Taddei, A stabilized POD model for tur-bulent flows over a range of Reynolds numbers: Optimal parameter sampling and constrained projection. J. Comput. Phys. 371 (2018), 214-243. · Zbl 1415.76387
[17] A. Figotin and J. H. Schenker, Hamiltonian structure for dispersive and dissipative dynamical systems. J. Stat. Phys. 128 (2007), no. 4, 969-1056. · Zbl 1128.82012
[18] S. Fiori, A Riemannian steepest descent approach over the inhomogeneous sym-plectic group: Application to the averaging of linear optical systems. Appl. Math. Comput. 283 (2016), 251-264. · Zbl 1410.65062
[19] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas, Non-linear model reduc-tion for uncertainty quantification in large-scale inverse problems. Internat. J. Numer. Methods Engrg. 81 (2010), no. 12, 1581-1608. · Zbl 1183.76837
[20] K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their L 1 error bounds. Internat. J. Control 39 (1984), no. 6, 1115-1193. · Zbl 0543.93036
[21] Y. Gong, Q. Wang, and Z. Wang, Structure-preserving Galerkin POD reduced-order modeling of Hamiltonian systems. Comput. Methods Appl. Mech. Engrg. 315 (2017), 780-798. · Zbl 1439.37083
[22] W. B. Gordon, On the completeness of Hamiltonian vector fields. Proc. Amer. Math. Soc. (1970), 329-331. · Zbl 0206.10201
[23] C. Greif and K. Urban, Decay of the Kolmogorov N -width for wave problems. Appl. Math. Lett. 96 (2019), 216-222. · Zbl 1423.35242
[24] M. Gromov, Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82 (1985), no. 2, 307-347. · Zbl 0592.53025
[25] S. Gugercin, C. Beattie, and S. Chaturantabut, Structure-preserving model reduc-tion for nonlinear port-Hamiltonian systems. SIAM J. Sci. Comput. 38 (2016), no. 5, B837-B865. · Zbl 1376.37120
[26] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration. Springer Ser. Comput. Math. 31, 2006. · Zbl 1094.65125
[27] C. Hartmann, V. M. Vulcanov, and C. Schütte, Balanced truncation of linear second-order systems: a Hamiltonian approach. Multiscale Model. Simul. 8 (2010), no. 4, 1348-1367. · Zbl 1380.93070
[28] J. S. Hesthaven and C. Pagliantini, Structure-preserving reduced basis methods for Poisson systems. Math. Comp. 90 (2021), no. 330, 1701-1740. · Zbl 1465.37095
[29] J. S. Hesthaven, C. Pagliantini, and N. Ripamonti, Rank-adaptive structure-preserving reduced basis methods for Hamiltonian systems. 2020, arXiv:2007.13153.
[30] J. S. Hesthaven, G. Rozza, and B. Stamm, Certified reduced basis methods for parametrized partial differential equations. Springer, 2016. DOI 10.1007/978-3-319-22470-1. · Zbl 1329.65203 · doi:10.1007/978-3-319-22470-1
[31] C. Huang, K. Duraisamy, and C. L. Merkle, Investigations and improvement of robustness of reduced-order models of reacting flow. AIAA J. 57 (2019), no. 12, 5377-5389.
[32] M. Karow, D. Kressner, and F. Tisseur, Structured eigenvalue condition numbers. SIAM J. Matrix Anal. Appl. 28 (2006), no. 4, 1052-1068. · Zbl 1130.65054
[33] S. Lall, P. Krysl, and J. E. Marsden, Structure-preserving model reduction for mechanical systems. Phys. D 184 (2003), no. 1-4, 304-318. · Zbl 1041.70011
[34] J. E. Marsden and T. S. Ratiu, Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems. Texts Appl. Math. 17, Springer, 2013.
[35] Y. Miyatake, Structure-preserving model reduction for dynamical systems with a first integral. Jpn. J. Ind. Appl. Math. 36 (2019), no. 3, 1021-1037. · Zbl 1427.65408
[36] B. Moore, Principal component analysis in linear systems: Controllability, observ-ability, and model reduction. IEEE Trans. Automat. Control 26 (1981), no. 1, 17-32. · Zbl 0464.93022
[37] R. Muruhan and L. R. Petzold, A new look at proper orthogonal decomposition. SIAM J. Numer. Anal. 41 (2003), no. 5, 1893-1925. · Zbl 1053.65106
[38] E. Musharbash, F. Nobile, and E. Vidličková, Symplectic dynamical low rank approximation of wave equations with random parameters. BIT 60 (2020), no. 4, 1153-1201. · Zbl 1479.65009
[39] M. Ohlberger and S. Rave, Nonlinear reduced basis approximation of parame-terized evolution equations via the method of freezing. C. R. Math. 351 (2013), no. 23-24, 901-906. · Zbl 1281.65117
[40] C. Pagliantini, Dynamical reduced basis methods for Hamiltonian systems. Numer. Math. (2021), 1-40.
[41] C. Paige and C. Van Loan, A Schur decomposition for Hamiltonian matrices. Linear Algebra Appl. 41 (1981), 11-32. · Zbl 1115.15316
[42] B. Peherstorfer and K. Willcox, Online adaptive model reduction for non-linear systems via low-rank updates. SIAM J. Sci. Comput. 37 (2015), no. 4, A2123-A2150. · Zbl 1323.65102
[43] L. Peng and K. Mohseni, Geometric model reduction of forced and dissipative Hamiltonian systems. In 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 7465-7470, IEEE, 2016. DOI 10.1109/CDC.2016.7799422. · doi:10.1109/CDC.2016.7799422
[44] L. Peng and K. Mohseni, Symplectic model reduction of Hamiltonian systems. SIAM J. Sci. Comput. 38 (2016), no. 1, A1-A27. · Zbl 1330.65193
[45] R. V. Polyuga and A. Van der Schaft, Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46 (2010), no. 4, 665-672. · Zbl 1193.93085
[46] C. W. Rowley, T. Colonius, and R. M. Murray, Model reduction for compressible flows using POD and Galerkin projection. Phys. D 189 (2004), 115-129. · Zbl 1098.76602
[47] A. Salam and E. Al-Aidarous, Equivalence between modified symplectic Gram-Schmidt and Householder SR algorithms. BIT 54 (2014), no. 1, 283-302. · Zbl 1290.65032
[48] W. H. A. Schilders, H. A. Van der Vorst, and J. Rommes, Model order reduction: theory, research aspects and applications 13, Springer, Berlin, 2008.
[49] S. Sen, Reduced-basis approximation and a posteriori error estimation for many-parameter heat conduction problems. Numer. Heat Transf., Part B, Fundam. 54 (2008), no. 5, 369-389.
[50] L. Sirovich, Turbulence and the dynamics of coherent structures, Parts I, II and III. Quart. Appl. Math. (1987), 561-590. · Zbl 0676.76047
[51] K. Veroy, C. Prud’homme, D. Rovas, and A. T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In 16th AIAA computational fluid dynamics conference, p. 3847, AIAA, 2003. DOI 10.2514/6.2003-3847. · doi:10.2514/6.2003-3847
[52] R. Wu, R. Chakrabarti, and H. Rabitz, Optimal control theory for continuous-variable quantum gates. Phys. Rev. A 77 (2008), no. 5, 052303.
[53] H. Xu, An SVD-like matrix decomposition and its applications. Linear Algebra Appl. 368 (2003), 1-24. · Zbl 1025.15016
[54] R. Zimmerman, A. Vendl, and S. Görtz, Reduced-order modeling of steady flows subject to aerodynamic constraints. AIAA J. 52 (2014), no. 2, 255-266.
[55] Jan S. Hesthaven Institute of Mathematics, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland, jan.hesthaven@epfl.ch Cecilia Pagliantini Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands, c.pagliantini@tue.nl Nicolò Ripamonti Institute of Mathematics, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland, nicolo.ripamonti@epfl.ch
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.