×

Lagrange and \(H(\mathrm{curl}, \mathcal{B})\) based finite element formulations for the relaxed micromorphic model. (English) Zbl 1509.74048

Summary: Modeling the unusual mechanical properties of metamaterials is a challenging topic for the mechanics community and enriched continuum theories are promising computational tools for such materials. The so-called relaxed micromorphic model has shown many advantages in this field. In this contribution, we present significant aspects related to the relaxed micromorphic model realization with the finite element method (FEM). The variational problem is derived and different FEM-formulations for the two-dimensional case are presented. These are a nodal standard formulation \(H^1(\mathcal{B})\times H^1(\mathcal{B})\) and a nodal-edge formulation \(H^1(\mathcal{B}) \times H(\mathrm{curl}, \mathcal{B})\), where the latter employs the Nédélec space. In this framework, the implementation of higher-order Nédélec elements is not trivial and requires some technicalities which are demonstrated. We discuss the computational convergence behavior of Lagrange-type and tangential-conforming finite element discretizations. Moreover, we analyze the characteristic length effect on the different components of the model and reveal how the size-effect property is captured via this characteristic length parameter.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74E30 Composite and mixture properties
74M25 Micromechanics of solids

Software:

FEniCS; AceFEM; SyFi

References:

[1] Aivaliotis, A.; Tallarico, D.; d‘Agostino, MV; Daouadji, A.; Neff, P.; Madeo, A., Frequency- and angle-dependent scattering of a finite-sized meta-structure via the relaxed micromorphic model, Arch Appl Mech, 90, 1073-1096 (2020)
[2] Altan, BS; Aifantis, EC, On some aspects in the special theory of gradient elasticity, J Mech Behav Mater, 8, 3, 231-282 (1997)
[3] Barbagallo, G.; Madeo, A.; d’Agostino, MV; Abreu, R.; Ghiba, I-D; Neff, P., Transparent anisotropy for the relaxed micromorphic model: Macroscopic consistency conditions and long wave length asymptotics, Int J Solids Struct, 120, 7-30 (2017)
[4] Barbagallo, G.; Tallarico, D.; d’Agostino, MV; Aivaliotis, A.; Neff, P.; Madeo, A., Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures, Int J Solids Struct, 162, 148-163 (2019)
[5] Boffi D, Brezzi F, Fortin M (2014) Mixed Finite Element Methods and Applications, volume 44 of Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg · Zbl 1277.65092
[6] Brezzi, F.; Douglas, J.; Marini, LD, Two families of mixed finite elements for second order elliptic problems, Numer Math, 47, 217-235 (1985) · Zbl 0599.65072
[7] Cosserat E, Cosserat F (1909) Theory of deformable bodies. Hermann and Sons · JFM 38.0693.02
[8] Crowley, CW; Silvester, PP; Hurwitz, H., Covariant projection elements for 3D vector field problems, IEEE Trans Magn, 24, 1, 397-400 (1988)
[9] d‘Agostino, MV; Barbagallo, G.; Ghiba, I-D; Eidel, B.; Neff, P.; Madeo, A., Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model, J Elast, 139, 299-329 (2020) · Zbl 1433.74009
[10] d’Agostino MV, Rizzi G, Khan H, Lewintan P, Madeo A, Neff P (2021) The consistent coupling boundary condition for the classical micromorphic model: existence, uniqueness and interpretation of the parameters (submitted). arXiv:2112.12050
[11] Eringen AC (1968) Mechanics of micromorphic continua. In: Mechanics of Generalized Continua, pages 18-35. Springer, Berlin, Heidelberg · Zbl 0181.53802
[12] Eringen, AC; Suhubi, ES, Nonlinear theory of simple micro-elastic solids-I, Int J Eng Sci, 2, 2, 189-203 (1964) · Zbl 0138.21202
[13] Fischer, P.; Klassen, M.; Mergheim, J.; Steinmann, P.; Müller, R., Isogeometric analysis of 2D gradient elasticity, Comput Mech, 47, 1432-0924 (2011) · Zbl 1398.74329
[14] Fischer, SCL; Hillen, L.; Eberl, C., Mechanical metamaterials on the way from laboratory scale to industrial applications: Challenges for characterization and scalability, Materials, 13, 16, 3605 (2020)
[15] Ghiba, I-D; Neff, P.; Madeo, A.; Placidi, L.; Rosi, G., The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics, Math Mech Solids, 20, 10, 1171-1197 (2015) · Zbl 1338.74007
[16] Jiang, Y.; Li, Y., 3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores, Sci Rep, 8, 1, 2397 (2018)
[17] Kirby RC, Logg A, Rognes ME, Terrel AR (2012) Common and unusual finite elements. In: Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, pages 95-119. Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1247.65105
[18] Korelc J, Wriggers P (2016) Automation of Finite Element Methods. Springer International Publishing · Zbl 1367.74001
[19] Lee, J-H; Singer, JP; Thomas, EL, Micro-/nanostructured mechanical metamaterials, Adv Mater, 24, 36, 4782-4810 (2012)
[20] Lei, M.; Hong, W.; Zhao, Z.; Hamel, C.; Chen, M.; Lu, H.; Qi, HJ, 3D printing of auxetic metamaterials with digitally reprogrammable shape, ACS Applied Materials & Interfaces, 11, 25, 22768-22776 (2019)
[21] Leismann, T.; Mahnken, R., Comparison of hyperelastic micromorphic, micropolar and microstrain continua, Int J Non-Linear Mech, 77, 115-127 (2015)
[22] Leismann, T.; Mahnken, R., Transition from hyperelastic micromorphic to micropolar and microstrain continua, PAMM, 15, 1, 329-330 (2015)
[23] Madeo, A.; Neff, P.; Ghiba, I-D; Placidi, L.; Rosi, G., Band gaps in the relaxed linear micromorphic continuum, Z Angew Math Mech, 95, 9, 880-887 (2015) · Zbl 1326.74106
[24] Madeo, A.; Neff, P.; Ghiba, I-D; Placidi, L.; Rosi, G., Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps, Continuum Mech Thermodyn, 75, 551-571 (2015) · Zbl 1341.74085
[25] Madeo, A.; Neff, P.; d’Agostino, MV; Barbagallo, G., Complete band gaps including non-local effects occur only in the relaxed micromorphic model, Comptes Rendus Mécanique, 344, 11-12, 784-796 (2016)
[26] Madeo, A.; Neff, P.; Ghiba, I-D; Rosi, G., Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model, J Mech Phys Solids, 95, 441-479 (2016) · Zbl 1482.74103
[27] Madeo A, Neff P, Barbagallo G, d’Agostino MV, Ghiba I-D (2017) A review on wave propagation modeling in band-gap metamaterials via enriched continuum models. In: Mathematical Modelling in Solid Mechanics, volume 69 of Adv. Struct. Mater., pages 89-105. Springer, Singapore · Zbl 1387.74058
[28] Madeo, A.; Collet, M.; Miniaci, M.; Billon, K.; Ouisse, M.; Neff, P., Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia, J Elast, 130, 1, 59-83 (2018) · Zbl 1387.74004
[29] Mindlin, RD, Micro-structure in linear elasticity, Arch Ration Mech Anal, 16, 51-78 (1964) · Zbl 0119.40302
[30] Mindlin, RD; Eshel, NN, On first strain-gradient theories in linear elasticity, Int J Solids Struct, 4, 1, 109-124 (1968) · Zbl 0166.20601
[31] Monk, P., An analysis of Nédélec’s method for the spatial discretization of maxwell’s equations, J Comput Appl Math, 47, 1, 101-121 (1993) · Zbl 0784.65091
[32] Montgomery, SM; Kuang, X.; Armstrong, CD; Qi, HJ, Recent advances in additive manufacturing of active mechanical metamaterials, Curr Opin Solid State Mater Sci, 24, 5, 100869 (2020)
[33] Nédélec, JC, Mixed finite elements in R3, Numer Math, 35, 3, 315-341 (1980) · Zbl 0419.65069
[34] Nédélec, JC, A new family of mixed finite elements in R3, Numer Math, 50, 57-81 (1986) · Zbl 0625.65107
[35] Neff, P., The Cosserat couple modulus for continuous solids is zero viz the linearized cauchy-stress tensor is symmetric, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 86, 11, 892-912 (2006) · Zbl 1104.74007
[36] Neff P, Jeong J, Münch I, Ramézani H (2010) Linear Cosserat elasticity, conformal curvature and bounded stiffness. In: Mechanics of Generalized Continua: One Hundred Years After the Cosserats, pages 55-63. Springer New York · Zbl 1396.74012
[37] Neff, P.; Ghiba, I-D; Madeo, A.; Placidi, L.; Rosi, G., A unifying perspective: the relaxed linear micromorphic continuum, Continuum Mech Thermodyn, 26, 5, 639-681 (2014) · Zbl 1341.74135
[38] Neff, P.; Ghiba, I-D; Lazar, M.; Madeo, A., The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations, The Quarterly Journal of Mechanics and Applied Mathematics, 68, 1, 53-84 (2015) · Zbl 1310.74037
[39] Neff, P.; Madeo, A.; Barbagallo, G.; d’Agostino, MV; Abreu, R.; Ghiba, I-D, Real wave propagation in the isotropic-relaxed micromorphic model, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473, 2197, 20160790 (2017) · Zbl 1404.82028
[40] Neff, P.; Eidel, B.; d‘Agostino, MV; Madeo, A., Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization, J Elast, 139, 269-298 (2020) · Zbl 1433.74014
[41] Olm, M.; Badia, S.; Martín, AF, On a general implementation of h- and p-adaptive curl-conforming finite elements, Adv Eng Softw, 132, 74-91 (2019)
[42] Plocher, J.; Panesar, A., Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures, Mater Des, 183, 108164 (2019)
[43] Raviart PA, Thomas JM (1977) A mixed finite element method for 2-nd order elliptic problems. In: Galligani I, Magenes E (eds) Mathematical Aspects of Finite Element Methods, pages 292-315, Berlin, Heidelberg. Springer Berlin Heidelberg · Zbl 0362.65089
[44] Rizzi G, Hütter G, Khan H, Ghiba I-D, Madeo A, Neff P (2021a) Analytical solution of the cylindrical torsion problem for the relaxed micromorphic continuum and other generalized continua (including full derivations). to appear in Mathematics and Mechanics of Solids · Zbl 07590438
[45] Rizzi, G.; Hütter, G.; Madeo, A.; Neff, P., Analytical solutions of the simple shear problem for micromorphic models and other generalized continua, Arch Appl Mech, 91, 2237-2254 (2021)
[46] Rizzi, G.; Hütter, G.; Madeo, A.; Neff, P., Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua, Continuum Mech Thermodyn, 33, 1505-1539 (2021) · Zbl 1537.74245
[47] Rizzi G, Khan H, Ghiba I-D, Madeo A, Neff P (2021d) Analytical solution of the uniaxial extension problem for the relaxed micromorphic continuum and other generalized continua (including full derivations). to appear in Archive of Applied Mechanics · Zbl 07590438
[48] Rognes, ME; Kirby, RC; Logg, A., Efficient assembly of \(H({{\rm div}})\) and \(H({{\rm curl}})\) conforming finite elements, SIAM J Sci Comput, 31, 9, 4130-4151 (2009) · Zbl 1206.65248
[49] Schöberl, J.; Zaglmayr, S., High order Nédélec elements with local complete sequence properties, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 24, 2, 374-384 (2005) · Zbl 1135.78337
[50] Sky, A.; Neunteufel, M.; Münch, I.; Schöberl, J.; Neff, P., A hybrid \(H^1\times H({\rm curl})\) finite element formulation for a relaxed micromorphic continuum model of antiplane shear, Comput Mech, 68, 1-24 (2021) · Zbl 1480.74291
[51] Sky A, Neunteufel M, Muench I, Schöberl J, Neff P (2022) Primal and mixed finite element formulations for the relaxed micromorphic model (submitted). arXiv:2202.08715 · Zbl 1507.74048
[52] Suhubi, ES; Eringen, AC, Nonlinear theory of micro-elastic solids-II, Int J Eng Sci, 2, 4, 389-404 (1964) · Zbl 0138.21202
[53] Surjadi, JU; Gao, L.; Du, H.; Li, X.; Xiong, X.; Fang, NX; Lu, Y., Mechanical metamaterials and their engineering applications, Adv Eng Mater, 21, 3, 1800864 (2019)
[54] Wriggers, P., Nonlinear Finite Element Methods (2008), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1153.74001
[55] Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L., Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog Mater Sci, 94, 114-173 (2018)
[56] Zadpoor, AA, Mechanical meta-materials, Mater Horiz, 3, 371-381 (2016)
[57] Zienkiewicz, OC; Taylor, RL, The finite element patch test revisited a computer test for convergence, validation and error estimates, Comput Methods Appl Mech Eng, 149, 1, 223-254 (1997) · Zbl 0918.73134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.