×

Representation of capacity drop at a road merge via point constraints in a first order traffic model. (English) Zbl 1420.35156

Summary: We reproduce the capacity drop phenomenon at a road merge by implementing a non-local point constraint at the junction in a first order traffic model. We call capacity drop the situation in which the outflow through the junction is lower than the receiving capacity of the outgoing road, as too many vehicles trying to access the junction from the incoming roads hinder each other. In this paper, we first construct an enhanced version of the locally constrained model introduced by B. Haut, G. Bastin and Y. Chitour [“A macroscopic traffic model for road networks with a representation of the capacity drop phenomenon at the junctions”, IFAC Proc. Vols. 38, No. 1, 114–119 (2005; doi:10.3182/20050703-6-CZ-1902.02042)], then we propose its counterpart featuring a non-local constraint and finally we compare numerically the two models by constructing an adapted finite volumes scheme.

MSC:

35L65 Hyperbolic conservation laws
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
90B20 Traffic problems in operations research
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35A35 Theoretical approximation in context of PDEs
Full Text: DOI

References:

[1] B. Andreianov, G.M. Coclite and C. Donadello, Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete Contin. Dyn. Syst. A 37 (2017) 5913-5942. · Zbl 1368.90043 · doi:10.3934/dcds.2017257
[2] B. Andreianov, C. Donadello, U. Razafison and M.D. Rosini, Riemann problems with non – local point constraints and capacity drop. Math. Biosci. Eng. 12 (2015) 259-278. · Zbl 1308.35134 · doi:10.3934/mbe.2015.12.259
[3] B. Andreianov, C. Donadello, U. Razafison and M.D. Rosini, Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks. ESAIM: M2AN 50 (2016) 1269-1287. · Zbl 1370.65042 · doi:10.1051/m2an/2015078
[4] B. Andreianov, C. Donadello, U. Razafison and M.D. Rosini, Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux. J. Math. Pures App. 116 (2018) 309-346. · Zbl 1404.35282 · doi:10.1016/j.matpur.2018.01.005
[5] B. Andreianov, C. Donadello and M.D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop. Math. Models Methods Appl. Sci. 24 (2014) 2685-2722. · Zbl 1307.35166
[6] B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws. Numer. Math. 115 (2010) 609-645. · Zbl 1196.65151
[7] C. Bardos, A.Y. Leroux and J.C. Nedelec, First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4 (1979) 1017-1034. · Zbl 0418.35024 · doi:10.1080/03605307908820117
[8] A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives. EMS Surv. Math. Sci. 1 (2014) 47-111. · Zbl 1301.35193 · doi:10.4171/EMSS/2
[9] C. Cancès and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws. SIAM J. Numer. Anal. 50 (2012) 3036-3060. · Zbl 1307.65111
[10] C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows. SIAM J. Sci. Comput. 29 (2007) 539-555. · Zbl 1143.35339
[11] C. Chalons, P. Goatin and N. Seguin, General constrained conservation laws. Application to pedestrian flow modeling.. Networks Heterogen. Media 8 (2013) 433-463. · Zbl 1275.35144 · doi:10.3934/nhm.2013.8.433
[12] G.M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network. SIAM J. Math. Anal. 36 (2005) 1862-1886. · Zbl 1114.90010 · doi:10.1137/S0036141004402683
[13] R. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234 (2007) 654-675. · Zbl 1116.35087
[14] R.M. Colombo, P. Goatin and M.D. Rosini, A macroscopic model for pedestrian flows in panic situations. In: Current Advances in Nonlinear Analysis and Related Topics. GAKUTO Internat. Ser. Math. Sci. Appl. Gakkōtosho, Tokyo 32 (2010) 255-272. · Zbl 1226.35050
[15] R.M. Colombo, P. Goatin and M.D. Rosini, On the modelling and management of traffic. ESAIM: M2AN 45 (2011) 853-872. · Zbl 1267.90032 · doi:10.1051/m2an/2010105
[16] R.M. Colombo and M.D. Rosini, Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28 (2005) 1553-1567. · Zbl 1108.90016
[17] R.M. Colombo and M.D. Rosini, Existence of nonclassical solutions in a pedestrian flow model. Nonlinear Anal.: Real World App. 10 (2009) 2716-2728. · Zbl 1169.35360 · doi:10.1016/j.nonrwa.2008.08.002
[18] C. D’Apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks. SIAM J. Math. Anal. 38 (2006) 717-740. · Zbl 1147.35331 · doi:10.1137/050631628
[19] M. Garavello, K. Han and B. Piccoli, Models for vehicular traffic on networks. Conservation laws models. AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO 9 (2016). · Zbl 1351.90045
[20] M. Garavello and B. Piccoli, Traffic flow on networks. Conservation laws models. AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO 1 (2006). · Zbl 1136.90012
[21] M. Garavello and B. Piccoli, Conservation laws on complex networks. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. 26 (2009) 1925-1951. · Zbl 1181.35144 · doi:10.1016/j.anihpc.2009.04.001
[22] B. Haut, G. Bastin and Y. Chitour, A macroscopic traffic model for road networks with a representation of the capacity drop phenomenon at the junctions. In Vol. 226 of Proceedings 16th IFAC World Congress, Prague, Czech Republic (2005) Tu-M01-TP/3.
[23] S.N. Kruzhkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228-255. · Zbl 0202.11203
[24] M.J. Lighthill and G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A. 229 (1955) 317-345. · Zbl 0064.20906 · doi:10.1098/rspa.1955.0089
[25] E.Y. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. 4 (2007) 729-770. · Zbl 1144.35037 · doi:10.1142/S0219891607001343
[26] S.F. Pellegrino, On the implementation of a finite volumes scheme with monotone transmission conditions for scalar conservation laws on a star-shaped network. Preprint arXiv:1902.02395 (2019).
[27] P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42-51. · Zbl 1414.90094
[28] M.D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications. Springer, Heidelberg (2013). · Zbl 1284.35003 · doi:10.1007/978-3-319-00155-5
[29] A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160 (2001) 181-193. · Zbl 0999.35018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.