×

Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks. (English) Zbl 1370.65042

A numerical model for pedestrian traffic, originally presented in [B. Andreianov et al., Math. Models Methods Appl. Sci. 24, No. 13, 2685–2722 (2014; Zbl 1307.35166)], is here evaluated and validated. The non-local constrained finite volume method is described and its convergence is shown and validated with an explicit solution obtained. Two characteristic simulation problems with collective effects in crowd dynamics: Faster is slower and the Braess’ paradox are used and qualitative highlight the bottleneck behavior numerical reproduction.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
90B20 Traffic problems in operations research
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76M12 Finite volume methods applied to problems in fluid mechanics

Citations:

Zbl 1307.35166

References:

[1] B. Andreianov, New approches to describing admissibility of solutions of scalar conservation laws with discontinuous flux. ESAIM Proc. Surv.50 (2015) 40-65. · Zbl 1342.35174 · doi:10.1051/proc/201550003
[2] B. Andreianov and C. Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape. J. Hyperbolic Differ. Equ.12 (2015) 343-384. · Zbl 1336.35230 · doi:10.1142/S0219891615500101
[3] B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws. Numer. Math.115 (2010) 609-645. · Zbl 1196.65151 · doi:10.1007/s00211-009-0286-7
[4] B. Andreianov, K.H. Karlsen and N.H. Risebro, A theory of L^{1}-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal.201 (2011) 27-86. · Zbl 1261.35088 · doi:10.1007/s00205-010-0389-4
[5] B. Andreianov, C. Donadello and M.D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop. Math. Models Methods Appl. Sci.24 (2014) 2685-2722. · Zbl 1307.35166 · doi:10.1142/S0218202514500341
[6] B. Andreianov, C. Donadello, U. Razafison and M.D. Rosini, Riemann problems with non-local point constraints and capacity drop. Math. Biosci. Eng.12 (2015) 259-278. · Zbl 1308.35134 · doi:10.3934/mbe.2015.12.259
[7] A. Aw and M. Rascle, Resurrection of ”second order” models of traffic flow. SIAM J. Appl. Math.60 (2000) 916-938. · Zbl 0957.35086 · doi:10.1137/S0036139997332099
[8] D.S. Bale, R. Leveque, S. Mitran and J.A. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput.24 (2002) 955-978. · Zbl 1034.65068 · doi:10.1137/S106482750139738X
[9] E.M. Cepolina, Phased evacuation: An optimisation model which takes into account the capacity drop phenomenon in pedestrian flows. Fire Safety J.44 (2009) 532-544. · doi:10.1016/j.firesaf.2008.11.002
[10] C. Cancès and N. Seguin, Error estimate for Godounov approximation of locally constrained conservation laws SIAM J. Numer. Anal.50 (2012) 3036-3060. · Zbl 1307.65111 · doi:10.1137/110836912
[11] C. Chalons, Numerical Approximation of a Macroscopic Model of Pedestrian Flows. SIAM J. Sci. Comput.29 (2007) 539-555. · Zbl 1143.35339 · doi:10.1137/050641211
[12] C. Chalons, P. Goatin and N. Seguin, General constrained conservation laws. Application to pedestrian flow modeling. Netw. Heterog. Media8 (2013) 433-463. · Zbl 1275.35144 · doi:10.3934/nhm.2013.8.433
[13] R.M. Colombo and M.D. Rosini, Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci.28 (2005) 1553-1567. · Zbl 1108.90016 · doi:10.1002/mma.624
[14] R.M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint. J. Differ. Equ.234 (2007) 654-675. · Zbl 1116.35087 · doi:10.1016/j.jde.2006.10.014
[15] R.M. Colombo and M.D. Rosini, Existence of nonclassical solutions in a Pedestrian flow model. Nonlin. Anal. Real World Appl.10 (2009) 2716-2728. · Zbl 1169.35360 · doi:10.1016/j.nonrwa.2008.08.002
[16] R.M. Colombo, G. Facchi, G. Maternini and M.D. Rosini, On the continuum modeling of crowds. In vol. 67 of Hyperbolic Problems: Theory, Numerics and Applications, Proc. of Sympos. Appl. Math. AMS, Providence, RI (2009) 517-526. · Zbl 1190.35149
[17] R.M. Colombo, P. Goatin, and M.D. Rosini, A macroscopic model for pedestrian flows in panic situations. GAKUTO Int. Series Math. Sci. Appl.32 (2010) 255-272. · Zbl 1226.35050
[18] R.M. Colombo, P. Goatin and M.D. Rosini, On the modelling and management of traffic. ESAIM: M2AN45 (2011) 853-872. · Zbl 1267.90032
[19] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer Verlag, New York (1996). · Zbl 0860.65075
[20] B.D. Greenshields, A Study of Traffic Capacity, In vol. 14 of Proc. Highway Res. Board (1934) 448-477.
[21] D. Helbing, I. Farkas and T. Vicsek, Simulating dynamical features of escape panic. Nature407 (2000) 487-490. · doi:10.1038/35035023
[22] D. Helbing, A. Johansson and H.Z. Al-Abideen, Dynamics of crowd disasters: An empirical study. Phys. Rev. E75 (2007) 046109. · doi:10.1103/PhysRevE.75.046109
[23] S.P. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks. Transport. Sci.39 (2005) 147-159. · doi:10.1287/trsc.1040.0102
[24] R.L. Hughes, The flow of human crowds. Annu. Rev. Fluid Mech.35 (2003) 169-182. · Zbl 1125.92324 · doi:10.1146/annurev.fluid.35.101101.161136
[25] V.A. Kopylow, The study of people’ motion parameters under forced egress situations. Ph.D. thesis, Moscow Civil Engineering Institute (1974).
[26] T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur and M. Schreckenberg, Experimental study of pedestrian counterflow in a corridor. J. Statist. Mech.2006 (2006) P10001. · doi:10.1088/1742-5468/2006/10/P10001
[27] S.N. Kruzhkov, First order quasilinear equations with several independent variables. Mat. Sb.81 (1970) 228-255. · Zbl 0215.16203
[28] R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002).
[29] M.J. Lighthill and G.B. Whitham, On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads. Proc. Roy. Soc. London Ser. A229 (1995) 317-345. · Zbl 0064.20906 · doi:10.1098/rspa.1955.0089
[30] D.R. Parisi and C.O. Dorso, Microscopic dynamics of pedestrian evacuation. Physica A354 (2005) 606-618. · doi:10.1016/j.physa.2005.02.040
[31] P.I. Richards, Shock waves on the highway. Oper. Res.4 (1956) 42-51. · doi:10.1287/opre.4.1.42
[32] M.D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model. J. Differ. Eq.246 (2009) 408-427. · Zbl 1171.35074 · doi:10.1016/j.jde.2008.03.018
[33] M.D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications. Springer, Heidelberg (2013). · Zbl 1284.35003
[34] A. Schadschneider, W. Klingsch, H. Klüpfel and T. Kretz, C. Rogsch and A. Seyfried, Evacuation Dynamics: Empirical Results, Modeling and Applications. In Extreme Environmental Events, edited by R.A. Meyers. Springer (2011) 517-550.
[35] A. Seyfried, T. Rupprecht, A. Winkens, O. Passon, B. Steffen, W. Klingsch and M. Boltes, Capacity Estimation for Emergency Exits and Bottlenecks. In Interflam 2007 (2007) 247-258.
[36] S.A. Soria, R. Josens and D.R. Parisi, Experimental evidence of the ”Faster is Slower” effect in the evacuation of ants. Safety Sci.50 (2012) 1584-1588. · doi:10.1016/j.ssci.2012.03.010
[37] H.M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior. Transport. Res. Part B36 (2002) 275-290. · doi:10.1016/S0191-2615(00)00050-3
[38] X.L. Zhang, W.G. Weng, H.Y. Yuan and J.G. Chen, Empirical study of a unidirectional dense crowd during a real mass event. Physica. A392 (2013) 2781-2791. · Zbl 1402.91612 · doi:10.1016/j.physa.2013.02.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.