×

Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. (English) Zbl 1350.35117

Summary: We consider an extension of the traffic flow model proposed by Lighthill, Whitham and Richards, in which the mean velocity depends on a weighted mean of the downstream traffic density. We prove well-posedness and a regularity result for entropy weak solutions of the corresponding Cauchy problem, and use a finite volume central scheme to compute approximate solutions. We perform numerical tests to illustrate the theoretical results and to investigate the limit as the convolution kernel tends to a Dirac delta function.

MSC:

35L65 Hyperbolic conservation laws
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
90B20 Traffic problems in operations research
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L04 Initial-boundary value problems for first-order hyperbolic equations
Full Text: DOI

References:

[1] A. Aggarwal, Nonlocal systems of conservation laws in several space dimensions,, SIAM Journal on Numerical Analysis, 53, 963 (2015) · Zbl 1318.65046 · doi:10.1137/140975255
[2] D. Amadori, An integro-differential conservation law arising in a model of granular flow,, J. Hyperbolic Differ. Equ., 9, 105 (2012) · Zbl 1248.35118 · doi:10.1142/S0219891612500038
[3] P. Amorim, On the numerical integration of scalar nonlocal conservation laws,, ESAIM M2AN, 49, 19 (2015) · Zbl 1317.65165 · doi:10.1051/m2an/2014023
[4] F. Betancourt, On nonlocal conservation laws modelling sedimentation,, Nonlinearity, 24, 855 (2011) · Zbl 1381.76368 · doi:10.1088/0951-7715/24/3/008
[5] S. Blandin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling,, Numerische Mathematik, 1 (2015) · Zbl 1336.65130 · doi:10.1007/s00211-015-0717-6
[6] C. Canudas De Wit, Grenoble Traffic Lab: An experimental platform for advanced traffic monitoring and forecasting,, IEEE Control Systems, 35, 23 (2015) · doi:10.1109/MCS.2015.2406657
[7] R. M. Colombo, A class of nonlocal models for pedestrian traffic,, Mathematical Models and Methods in Applied Sciences, 22 (2012) · Zbl 1248.35213 · doi:10.1142/S0218202511500230
[8] R. M. Colombo, Control of the continuity equation with a non local flow,, ESAIM Control Optim. Calc. Var., 17, 353 (2011) · Zbl 1232.35176 · doi:10.1051/cocv/2010007
[9] R. M. Colombo, Nonlocal crowd dynamics models for several populations,, Acta Math. Sci. Ser. B Engl. Ed., 32, 177 (2012) · Zbl 1265.35214 · doi:10.1016/S0252-9602(12)60011-3
[10] G. Crippa, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow,, Nonlinear Differential Equations and Applications NoDEA, 20, 523 (2013) · Zbl 1268.35087 · doi:10.1007/s00030-012-0164-3
[11] M. Garavello, <em>Traffic Flow on Networks</em>,, AIMS (2006) · Zbl 1136.90012
[12] P. Goatin, <em>The Lighthill-Whitham-Richards Traffic Flow Model with Non-Local Velocity: Analytical Study and Numerical Results</em>,, Research Report RR-8685 (2015)
[13] S. Göttlich, Modeling, simulation and validation of material flow on conveyor belts,, Applied Mathematical Modelling, 38, 3295 (2014) · doi:10.1016/j.apm.2013.11.039
[14] J. C. Herrera, Incorporation of lagrangian measurements in freeway traffic state estimation,, Transportation Research Part B: Methodological, 44, 460 (2010) · doi:10.1016/j.trb.2009.10.005
[15] M. Herty, Coupling of non-local driving behaviour with fundamental diagrams,, Kinetic and Related Models, 5, 843 (2012) · Zbl 1262.90037 · doi:10.3934/krm.2012.5.843
[16] F. James, Numerical methods for one-dimensional aggregation equations,, SIAM Journal on Numerical Analysis, 53, 895 (2015) · Zbl 1318.65060 · doi:10.1137/140959997
[17] S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81, 228 (1970) · Zbl 0202.11203
[18] A. Kurganov, Non-oscillatory central schemes for a traffic flow model with Arrehenius look-ahead dynamics,, Netw. Heterog. Media, 4, 431 (2009) · Zbl 1183.76817 · doi:10.3934/nhm.2009.4.431
[19] D. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics,, Networks and Heterogeneous Media, 6, 681 (2011) · Zbl 1270.35313 · doi:10.3934/nhm.2011.6.681
[20] K.-A. Lie, On the artificial compression method for second-order nonoscillatory central difference schemes for system of conservation laws,, SIAM J. Sci. Comput., 24, 1157 (2003) · Zbl 1038.65078 · doi:10.1137/S1064827501392880
[21] M. J. Lighthill, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229, 317 (1955) · Zbl 0064.20906 · doi:10.1098/rspa.1955.0089
[22] H. Nessyahu, Non-oscillatory central differencing for hyperbolic conservation laws,, J. Comput. Phys., 87, 408 (1990) · Zbl 0697.65068 · doi:10.1016/0021-9991(90)90260-8
[23] P. I. Richards, Shock waves on the highway,, Operations Res., 4, 42 (1956) · Zbl 1414.90094 · doi:10.1287/opre.4.1.42
[24] A. Sopasakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics,, SIAM J. Appl. Math., 66, 921 (2006) · Zbl 1141.90014 · doi:10.1137/040617790
[25] M. Treiber, <em>Traffic Flow Dynamics</em>,, Springer-Verlag (2013) · doi:10.1007/978-3-642-32460-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.