×

A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries. (English) Zbl 1470.90018

Summary: This study revises the non-local macroscopic pedestrian flow model proposed in [R. M. Colombo et al., Math. Models Methods Appl. Sci. 22, No. 4, 1150023, 34 p. (2012; Zbl 1248.35213)] to account for anisotropic interactions and the presence of walls or other obstacles in the walking domain. We prove the well-posedness of this extended model and we apply high-resolution numerical schemes to illustrate the model characteristics. In particular, numerical simulations highlight the role of different model parameters in the observed pattern formation.

MSC:

90B20 Traffic problems in operations research
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences

Citations:

Zbl 1248.35213

References:

[1] R. M. Colombo, M. Garavello, M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023. · Zbl 1248.35213
[2] M. Mimault, Lois de conservation pour la modélisation des mouvements de foule, PhD thesis, 2015, University of Nice. Available
[3] R. M. Colombo, E. Rossi, Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065. · Zbl 1395.35143
[4] R. M. Colombo, E. Rossi, Modelling crowd movements in domains with boundaries, IMA J. Appl.Math., 84 (2019), 833-853. · Zbl 1427.91190
[5] R. Colombo, M. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods Appl. Sci., 28 (2008), 1553-1567. · Zbl 1108.90016
[6] R. L. Hughes, A continuum theory for the flow of pedestrians, Transpn. Res.-B, 36 (2002), 507-535.
[7] N. Bellomo, C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345. · Zbl 1198.92036
[8] Y. Jiang, P. Zhang, S. Wong, R. Liu, A higher-order macroscopic model for pedestrian flows, Physica A, 389 (2010), 4623-4635.
[9] R. Bürger, D. Inzunza, P. Mulet, L. M. Villada, Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour, Appl. Numer. Math., 144 (2019), 234-252. · Zbl 1450.65100
[10] B. Maury, A. Roudneff-Chupin, F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2009), 1787-1821. · Zbl 1223.35116
[11] B. Piccoli, A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107. · Zbl 1170.90351
[12] L. Bruno, A. Tosin, P. Tricerri, F. Venuti, Non-local first-order modelling of crowd
[13] R. Bürger, G. Chowell, E. Gavilán, P. Mulet, L. M. Villada, Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents, Math. Biosci. Eng., 15 (2018), 95-123. · Zbl 1379.92055
[14] R. Bürger, G. Chowell, E. Gavilán, P. Mulet, L. M. Villada, Numerical solution of a spatio-temporal predator-prey model with infected prey, Math. Biosci. Eng., 16 (2019), 438-473. · Zbl 1503.92054
[15] R. M. Colombo, M. Lécureux-Mercier, Nonlocal crowd dynamics models for several populations, Acta Math. Sci. Ser. B (Engl. Ed.), 32 (2012), 177-196. · Zbl 1265.35214
[16] P. Kachroo, S. J. Al-Nasur, S. A. Wadoo, A. Shende, Pedestrian Dynamics, Springer-Verlag, 2008. · Zbl 1237.93003
[17] S. Blandin, P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241. · Zbl 1336.65130
[18] A. Kurganov, A. Polizzi, Non-oscillatory central schemes for traffic flow models with arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451. · Zbl 1183.76817
[19] A. Sopasakis, M. Katsoulakis, Stochastic modelling and simulation of traffic
[20] F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885. · Zbl 1381.76368
[21] K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions, Quart. J. Appl.Math., 57 (1999), 573-600. · Zbl 1020.35058
[22] S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl, Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Model., 38 (2014), 3295-3313.
[23] C. Appert-Rolland, J. Cividini, H. J. Hilhorst, P. Degond, Pedestrian
[24] P. Degond, C. Appert-Rolland, J. Pettré, G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839. · Zbl 1426.76051
[25] R. Etikyala, S. Göttlich, A. Klar, S. Tiwari, Particle methods for pedestrian flow
[26] W. Daamen, D. C. Duives, S. P. Hoogendoorn (eds.), Proceedings of the Conference on Pedestrianand Evacuation Dynamics 2014 (PED 2014), 22-24 October 2014, Delft, The Netherlands, vol. 2 of Transportation Research Procedia, 2014.
[27] A. Dederichs, G. Köster, A. Schadschneider (eds.), Proceedings of Pedestrian and EvacuationDynamics 2018 (PED 2018), vol. A26 of Collective Dynamics, 2020.
[28] W. Song, J. Ma, L. Fu (eds.), Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED2016), 17-21 October 2016, Hefei, China, University of Science and Technology Press, Hefei, China, 2016.
[29] C. Chalons, P. Goatin, L. M. Villada, High-order numerical schemes for one-dimensional nonlocal conservation laws, SIAM J. Sci. Comput., 40 (2018), A288-A305. · Zbl 1387.35406
[30] F. A. Chiarello, P. Goatin, L. M. Villada, High-order Finite Volume WENO schemes for non-local multi-class traffic flow models, in Proceedings of the XVⅡ International Conference (HYP2018)on Hyperbolic Problems, 25-29 June 2018, Pennsylvania State University, USA (eds. A. Bressan, M. Lewicka, D. Wang and Y. Zheng), American Institute of Mathematical Sciences, Springfield MO, USA, 2020, 353-360. · Zbl 1460.65106
[31] F. A. Chiarello, P. Goatin, L. M. Villada, Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models, Comput. Appl. Math., 39 (2020), https://doi.org/10.1007/s40314-020-1097-9. · Zbl 1463.65220
[32] D. Inzunza, Métodos Implicitos-Explicitos para Problemas de Convección-Difusión-Reacción noLineales y no Locales, PhD thesis, 2019, https://www.ci2ma.udec.cl/publicaciones/tesisposgrado/graduado.php?id=70, Universidad de Concepcion.
[33] G. S. Jiang, C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202-228. · Zbl 0877.65065
[34] X. D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), 200-212. · Zbl 0811.65076
[35] C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51 (2009), 82-126. · Zbl 1160.65330
[36] E. Rossi, Definitions of solutions to the IBVP for multi-dimensional scalar balance laws, J. Hyperbolic Differ. Equ., 15 (2018), 349-374. · Zbl 1406.35189
[37] J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596. · Zbl 1007.65066
[38] C. Bardos, A. Y. Le Roux, J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034. · Zbl 0418.35024
[39] S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb.(N.S.), 81 (1970), 228-255. · Zbl 0202.11203
[40] M. Lécureux-Mercier, Improved stability estimates on general scalar balance laws, 2010. · Zbl 1253.35079
[41] J. Von Zur Gathen, J. Gerhard, Modern Computer Algebra, Cambridge University Press, 2013. · Zbl 1277.68002
[42] A. Alhawsawi, M. Sarvi, M. Haghani, A. Rajabifard, Investigating pedestrians’ obstacle avoidance behaviour, Collective Dynamics, A26 (2020), 413-422.
[43] C. Dias, O. Ejtemai, M. Sarvi, M. Burd, Exploring pedestrian walking through angled corridors, Transp. Res. Procedia, 2 (2014), 19-25.
[44] K. Fujii, T. Sano, Experimental study on crowd flow passing through ticket gates in railway stations, Transp. Res. Procedia, 2 (2014), 630-635.
[45] X. Liu, W. Song, L. Fu, H. Zhang, Pedestrian inflow process under normal and special situations, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016,Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 136-143.
[46] X. Mai, X. Zhu, W. Song, J. Ma, Qualitative analysis on two-dimensional pedestrian flows - unidirectional and bidirectional, in Proceedings of Pedestrian and Evacuation Dynamics 2016(PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 151-156.
[47] M. Twarogowska, P. Goatin, R. Duvigneau, Comparative study of macroscopic pedestrian models, Transp. Res. Procedia, 2 (2014), 477-485. · Zbl 1428.90038
[48] M. Twarogowska, P. Goatin, R. Duvigneau, Macroscopic modeling and simulations of room evacuation, Appl. Math. Model., 38 (2014), 5781-5795. · Zbl 1428.90038
[49] J. Chen, Q. Zeng, W. Zhang, Y. Wu, Q. Liu, P. Lin, Restudy the faster-is-slower effect by using mice under high competition, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 159-162.
[50] T. Mashiko, T. Suzuki, Speed-up of evacuation by additional walls near the exit, in Proceedingsof Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 334-339.
[51] D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic, Nature, 407 (2000), 487-490.
[52] C. Feliciano, K. Nishinari, Investigation of pedestrian evacuation scenarios through congestion level and crowd danger, Collective Dynamics, A26 (2020), 150-157.
[53] Z. Shahhoseini, M. Sravi, M. Saberi, The impact of merging maneuvers on delay during evacuation, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 100-104.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.