×

Blister patterns and energy minimization in compressed thin films on compliant substrates. (English) Zbl 1442.74123

Summary: This paper is motivated by the complex blister patterns sometimes seen in thin elastic films on thick, compliant substrates. These patterns are often induced by an elastic misfit that compresses the film. Blistering permits the film to expand locally, reducing the elastic energy of the system. It is therefore natural to ask: what is the minimum elastic energy achievable by blistering on a fixed area fraction of the substrate? This is a variational problem involving both the elastic deformation of the film and substrate and the geometry of the blistered region. It involves three small parameters: the nondimensionalized thickness of the film, the compliance ratio of the film/substrate pair, and the mismatch strain. In formulating the problem, we use a small-slope (Föppl-von Kármán) approximation for the elastic energy of the film, and a local approximation for the elastic energy of the substrate.{ }For a one-dimensional version of the problem, we obtain “matching” upper and lower bounds on the minimum energy, in the sense that both bounds have the same scaling behavior with respect to the small parameters. The upper bound is straightforward and familiar: it is achieved by periodic blistering on a specific length scale. The lower bound is more subtle, since it must be proved without any assumption on the geometry of the blistered region.{ }For a two-dimensional version of the problem, our results are less complete. Our upper and lower bounds only “match” in their scaling with respect to the nondimensionalized thickness, not in the dependence on the compliance ratio and the mismatch strain. The lower bound is an easy consequence of our one-dimensional analysis. The upper bound considers a two-dimensional lattice of blisters and uses ideas from the literature on the folding or “crumpling” of a confined elastic sheet. Our main two-dimensional result is that in a certain parameter regime, the elastic energy of this lattice is significantly lower than that of a few large blisters.

MSC:

74K35 Thin films
74G65 Energy minimization in equilibrium problems in solid mechanics

References:

[1] Audoly, B.Stability of straight delamination blisters. Phys. Rev. Lett.83 (1999), no. 20, 4124-4127. doi: 10.1103/PhysRevLett.83.4124
[2] Audoly, B.; Boudaoud, A.Buckling of a stiff film bound to a compliant substrate. I. Formulation, linear stability of cylindrical patterns, secondary bifurcations. J. Mech. Phys. Solids56 (2008), no. 7, 2401-2421. doi: 10.1016/j.jmps.2008.03.003 · Zbl 1171.74349
[3] Audoly, B.; Boudaoud, A.Buckling of a stiff film bound to a compliant substrate. II. A global scenario for the formation of herringbone pattern. J. Mech. Phys. Solids56 (2008), no. 7, 2422-2443. doi: 10.1016/j.jmps.2008.03.002 · Zbl 1171.74350
[4] Audoly, B.; Boudaoud, A.Buckling of a stiff film bound to a compliant substrate. III. Herringbone solutions at large buckling parameter. J. Mech. Phys. Solids56 (2008), no. 7, 2444-2458. doi: 10.1016/j.jmps.2008.03.001 · Zbl 1171.74351
[5] Audoly, B.; Pomeau, Y.Elasticity and geometry. Oxford University Press, Oxford, 2010. · Zbl 1223.74001
[6] Belgacem, H. B.; Conti, S.; DeSimone, A.; Müller, S.Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlin. Sci.10 (2000), no. 6, 661-683. doi: 10.1007/s003320010007 · Zbl 1015.74029
[7] Belgacem, H. B.; Conti, S.; DeSimone, A.; Müller, S.Energy scaling of compressed elastic films‐three‐dimensional elasticity and reduced theories. Arch. Ration. Mech. Anal.164 (2002), no. 1, 1-37. doi: 10.1007/s002050200206 · Zbl 1041.74048
[8] Bella, P.; Kohn, R.Wrinkles as the result of compressive stresses in an annular thin film. Comm. Pure Appl. Math.67 (2013), no. 5, 693-747. doi: 10.1002/cpa.21471 · Zbl 1302.74105
[9] Bella, P.; Kohn, R.Metric‐induced wrinkling of a thin elastic sheet. J. Nonlin. Sci. (2014), 1-30: doi: 10.1007/s00332-014-9214-9
[10] Brandman, J.; Kohn, R. V.; Nguyen, H.‐M.Energy scaling laws for conically constrained thin elastic sheets. J. Elasticity113 (2013), no. 2, 251-264. doi: 10.1007/s10659-012-9420-3 · Zbl 1329.74096
[11] Cai, S.; Breid, D.; Crosby, A.; Suo, Z.; Hutchinson, J. W.Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids59 (2011), no. 5, 1094-1114. doi: 10.1016/j.jmps.2011.02.001 · Zbl 1270.74126
[12] Conti, S.; Maggi, F.Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal.187 (2008), no. 1, 1-48. doi: 10.1007/s00205-007-0076-2 · Zbl 1127.74005
[13] Cotterell, B.; Chen, Z.Buckling and cracking of thin films on compliant substrates under compression. Int. J. Frac.104 (2000), no. 2, 169-179. doi: 10.1023/A:1007628800620
[14] Davidovitch, B.; Schroll, R. D.; Cerda, E.Nonperturbative model for wrinkling in highly bendable sheets. Phys. Rev. E85 (2012), no. 6, 066105. doi: 10.1103/PhysRevE.85.066115
[15] Davidovitch, B.; Schroll, R. D.; Vella, D.; Adda‐Bedia, M.; Cerda, E.Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci.108 (2011), no. 45, 18227-18232. doi: 10.1073/pnas.1108553108 · Zbl 1355.74042
[16] Faou, J.‐Y.; Parry, G.; Grachev, S.; Barthel, E.How does adhesion induce the formation of telephone cord buckles?Phys. Rev. Lett.108 (2012), no. 11, 116102. doi: 10.1103/PhysRevLett.108.116102
[17] Faulhaber, S.; Mercer, C.; Moon, M.‐W.; Hutchinson, J.; Evans, A.Buckling delamination in compressed multilayers on curved substrates with accompanying ridge cracks. J. Mech. Phys. Solids54 (2006), no. 5, 1004-1028. doi: 10.1016/j.jmps.2005.11.005 · Zbl 1120.74488
[18] Giola, G.; Ortiz, M.Delamination of compressed thin films. Solid mechanics, 119-192, Advances in Applied Mechanics, 33. Elsevier, 1997. doi: 10.1016/S0065-2156(08)70386-7 · Zbl 0930.74024
[19] Huang, Z.; Hong, W.; Suo, Z.Evolution of wrinkles in hard films on soft substrates. Phys. Rev. E70 (2004), no. 3, 030601, 4 pp. doi: 10.1103/PhysRevE.70.030601
[20] Huang, Z. Y.; Hong, W.; Suo, Z.Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids53 (2005), no. 9, 2101-2118. doi: 10.1016/j.jmps.2005.03.007 · Zbl 1176.74116
[21] Hutchinson, J. W.; Thouless, M. D.; Liniger, E. G.Growth and configurational stability of circular, buckling‐driven film delaminations. Acta Metall. Mat.40 (1992), no. 2, 295-308. doi: 10.1016/0956-7151(92)90304-W
[22] Jagla, E. A.Modeling the buckling and delamination of thin films. Phys. Rev. B75 (2007), no. 8, 085405, 8 pp. doi: 10.1103/PhysRevB.75.085405
[23] Jin, W.; Sternberg, P.Energy estimates for the von Kármán model of thin‐film blistering. J. Math. Phys.42 (2001), no. 1, 192-199. doi: 10.1063/1.1316058 · Zbl 1028.74036
[24] Kohn, R. V.Energy‐driven pattern formation. International Congress of Mathematicians. Vol. I, 359-383. European Mathematical Society, Zürich, 2007. doi: 10.4171/022-1/15 · Zbl 1140.49030
[25] Kohn, R. V.; Nguyen, H.‐M.Analysis of a compressed thin film bonded to a compliant substrate: the energy scaling law. J. Nonlinear Sci.23 (2013), no. 3, 343-362. doi: 10.1007/s00332-012-9154-1 · Zbl 1421.74070
[26] Lobkovsky, A. E.Boundary layer analysis of the ridge singularity in a thin plate. Phys. Rev. E (3)53 (1996), no. 4, part B, 3750-3759. doi: 10.1103/PhysRevE.53.3750
[27] Lobkovsky, A. E.; Witten, T. A.Properties of ridges in elastic membranes. Phys. Rev. E.55 (1997), no. 2, 1577-1589. doi: 10.1103/PhysRevE.55.1577
[28] Moon, M.‐W.; Chung, J.‐W.; Lee, K.‐R.; Oh, K. H.; Wang, R.; Evans, A.An experimental study of the influence of imperfections on the buckling of compressed thin films. Acta. Mater.50 (2002), no. 5, 1219-1227. doi: 10.1016/S1359-6454(01)00423-2
[29] Moon, M.‐W.; Jensen, H. M.; Hutchinson, J. W.; Oh, K. H.; Evans, A. G.The characterization of telephone cord buckling of compressed thin films on substrates. J. Mech. Phys. Solids50 (2002), no. 11, 2355-2377. doi: 10.1016/S0022-5096(02)00034-0
[30] Moon, M.‐W.; Lee, K.‐R.; Oh, K. H.; Hutchinson, J. W.Buckle delamination on patterned substrates. Acta Mater.52 (2004), no. 10, 3151-3159. doi: 10.1016/j.actamat.2004.03.014
[31] Parry, G.; Coupeau, C.; Colin, J.; Cimitiére, A.Investigating the secondary buckling of thin films with a model based on elastic rods with hinges. J. Mech. Mat. Struct.4 (2009), no. 1, 121-138. doi: 10.2140/jomms.2009.4.121
[32] Song, J.; Jiang, H.; Choi, W.; Khang, D.; Huang, Y.; Rogers, J.An analytical study of two‐dimensional buckling of thin films on compliant substrates. J. Appl. Phys.103 (2008), no. 1, 014303. doi: 10.1063/1.2828050
[33] Suo, Z.; Hutchinson, J. W.Interface crack between two elastic layers. Int. J. Frac.43 (1990), no. 1, 1-18. doi: 10.1007/BF00018123
[34] Vella, D.; Bico, J.; Boudaoud, A.; Roman, B.; Reis, P. M.The macroscopic delamination of thin films from elastic substrates. Proc. Natl. Acad. Sci.106 (2009), no. 27, 10901-10906. doi: 10.1073/pnas.0902160106
[35] Vellinga, W. P.; denBosch, M. V.; Geers, M. G. D.Interaction between cracking, delamination and buckling in brittle elastic thin films. Int. J. Fract.154 (2008), no. 1‐2, 195-209. doi: 10.1007/s10704-008-9266-7 · Zbl 1421.74092
[36] Venkataramani, S. C.Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity17 (2004), no. 1, 301-312. doi: 10.1088/0951-7715/17/1/017 · Zbl 1058.74038
[37] Volinsky, A. A.; Waters, P.; Wright, G.Micro‐fluidic applications of telephone cord delamination blisters. Symposium W - mechanically active materials. MRS Proceedings, 855. Cambridge University Press, Cambridge, 2004. doi: 10.1557/PROC-855-W3.16
[38] Yu, H.‐H.; Hutchinson, J. W.Influence of substrate compliance on buckling delamination of thin films. Int. J. Frac.113 (2002), no. 1, 39-55. doi: 10.1023/A:1013790232359
[39] Yu, S.‐J.; Zhang, Y.‐J.; Chen, M.‐G.Telephone cord buckles in wedge‐shaped Fe films sputtering deposited on glass substrates. Thin Solid Films518 (2009), no. 1, 222-226. doi: 10.1016/j.tsf.2009.07.134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.