×

Analysis of a compressed thin film bonded to a compliant substrate: the energy scaling law. (English) Zbl 1421.74070

Summary: We consider the deformation of a thin elastic film bonded to a thick compliant substrate, when the (compressive) misfit is far beyond critical. We take a variational viewpoint – focusing on the total elastic energy, i.e., the membrane and bending energy of the film plus the elastic energy of the substrate – viewing the buckling of the film as a problem of energy-driven pattern formation. We identify the scaling law of the minimum energy with respect to the physical parameters of the problem, and we prove that a herringbone pattern achieves the optimal scaling. These results complement previous numerical studies, which have shown that an optimized herringbone pattern has lower energy than a number of other patterns. Our results are different, because (i) we make the scaling law achieved by the herringbone pattern explicit, and (ii) we give an elementary, ansatz-free proof that no pattern can achieve a better law.

MSC:

74K35 Thin films
74G65 Energy minimization in equilibrium problems in solid mechanics
74K20 Plates
Full Text: DOI

References:

[1] Audoly, B., Boudaoud, A.: Buckling of a stiff film bound to a compliant substrate—Part I: Formulation, linear stability of cylindrical patterns, secondary bifurcations. J. Mech. Phys. Solids 56, 2401-2421 (2008a) · Zbl 1171.74349 · doi:10.1016/j.jmps.2008.03.003
[2] Audoly, B., Boudaoud, A.: Buckling of a stiff film bound to a compliant substrate—Part II: A global scenario for the formation of herringbone pattern. J. Mech. Phys. Solids 56, 2422-2443 (2008b) · Zbl 1171.74350 · doi:10.1016/j.jmps.2008.03.002
[3] Audoly, B., Boudaoud, A.: Buckling of a stiff film bound to a compliant substrate—Part III: Herringbone solutions at large buckling parameter. J. Mech. Phys. Solids 56, 2444-2458 (2008c) · Zbl 1171.74351 · doi:10.1016/j.jmps.2008.03.001
[4] Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press, Oxford (2010) · Zbl 1223.74001
[5] Bella, P., Kohn, R.V.: Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math., to appear · Zbl 1302.74105
[6] Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Rigorous bounds for the Föppl-von Karman theory of isotropically compressed plates. J. Nonlinear Sci. 10, 661-683 (2000) · Zbl 1015.74029 · doi:10.1007/s003320010007
[7] Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Energy scaling of compressed elastic films—three dimensional elasticity and reduced theories. Arch. Ration. Mech. Anal. 164, 1-37 (2002) · Zbl 1041.74048 · doi:10.1007/s002050200206
[8] Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146-149 (1998) · doi:10.1038/30193
[9] Breid, D., Crosby, A.J.: Surface wrinkling behavior of finite circular plates. Soft Matter 5, 425-431 (2009) · doi:10.1039/b807820c
[10] Cai, S., Breid, D., Crosby, A.J., Suo, Z., Hutchinson, J.W.: Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids 59, 1094-1114 (2011) · Zbl 1270.74126 · doi:10.1016/j.jmps.2011.02.001
[11] Chen, X., Hutchinson, J.W.: Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597-603 (2004a) · Zbl 1111.74362 · doi:10.1115/1.1756141
[12] Chen, X., Hutchinson, J.W.: A family of herringbone patterns in thin films. Scr. Mater. 50, 797-801 (2004b) · doi:10.1016/j.scriptamat.2003.11.035
[13] Choksi, R., Kohn, R.V., Otto, F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201, 61-79 (1999) · Zbl 1023.82011 · doi:10.1007/s002200050549
[14] Choksi, R., Conti, S., Kohn, R.V., Otto, F.: Ground state energy scaling laws during the onset and destruction of the intermediate state in a type-I superconductor. Commun. Pure Appl. Math. 61, 595-626 (2008) · Zbl 1142.82031 · doi:10.1002/cpa.20206
[15] Conti, S.: Branched microstructures: scaling and asymptotic self-similarity. Commun. Pure Appl. Math. 53, 1448-1474 (2000) · Zbl 1032.74044 · doi:10.1002/1097-0312(200011)53:11<1448::AID-CPA6>3.0.CO;2-C
[16] Conti, S., Maggi, F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187, 1-48 (2008) · Zbl 1127.74005 · doi:10.1007/s00205-007-0076-2
[17] Davidovitch, B., Schroll, R.D., Vella, D., Addia-Bedia, M., Cerda, E.: Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. 108, 18227-18232 (2011) · Zbl 1355.74042 · doi:10.1073/pnas.1108553108
[18] Efimenko, K., Rackaitis, M., Manias, E., Vaziri, A., Mahadevan, L., Genzer, J.: Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293-297 (2005) · doi:10.1038/nmat1342
[19] Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180, 183-236 (2006) · Zbl 1100.74039 · doi:10.1007/s00205-005-0400-7
[20] Genzer, J., Groenewold, J.: Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2, 310-323 (2006) · doi:10.1039/b516741h
[21] Gioia, G., Ortiz, M.: Delamination of compressed thin films. Adv. Appl. Mech. 33, 119-192 (1997) · Zbl 0930.74024 · doi:10.1016/S0065-2156(08)70386-7
[22] Huang, Z., Hong, W., Suo, Z.: Evolution of wrinkles in hard films on soft substrates. Phys. Rev. E 70, 030601(R) (2004)
[23] Huang, Z., Hong, W., Suo, Z.: Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101-2118 (2005) · Zbl 1176.74116 · doi:10.1016/j.jmps.2005.03.007
[24] Huang, R., Im, S.H.: Dynamics of wrinkle growth and coarsening in stressed thin films. Phys. Rev. E 74, 026214 (2006) · doi:10.1103/PhysRevE.74.026214
[25] Im, S.H., Huang, R.: Wrinkle patterns of anisotropic crystal films on viscoelastic substrates. J. Mech. Phys. Solids 56, 3315-3330 (2008) · Zbl 1171.74352 · doi:10.1016/j.jmps.2008.09.011
[26] Jagla, E.: Modeling the buckling and delamination of thin films. Phys. Rev. B 75, 085405 (2007) · doi:10.1103/PhysRevB.75.085405
[27] Jin, W., Sternberg, P.: Energy estimates for the von Karman model of thin-film blistering. J. Math. Phys. 42, 192-199 (2001) · Zbl 1028.74036 · doi:10.1063/1.1316058
[28] Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47, 405-435 (1994) · Zbl 0803.49007 · doi:10.1002/cpa.3160470402
[29] Kohn, R.V., Nguyen, H.: Tension-induced wrinkling in a confined film: the energy scaling law and the associated cascade, in preparation
[30] Lin, P.-C., Yang, S.: Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching. Appl. Phys. Lett. 90, 241903 (2007) · doi:10.1063/1.2743939
[31] Lobkovsky, A.E., Witten, T.A.: Properties of ridges in elastic membranes. Phys. Rev. E 55, 1577-1589 (1997) · doi:10.1103/PhysRevE.55.1577
[32] Mahadevan, L., Rica, S.: Self-organized origami. Science 307, 1740 (2005) · doi:10.1126/science.1105169
[33] Ni, Y., He, L., Liu, Q.: Modeling kinetics of diffusion-controlled surface wrinkles. Phys. Rev. E 84, 051604 (2011) · doi:10.1103/PhysRevE.84.051604
[34] Song, J., Jiang, H., Choi, W.M., Khang, D.Y., Huang, Y., Rogers, J.A.: An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008a) · doi:10.1063/1.2828050
[35] Song, J., Jiang, H., Liu, Z.J., Khang, D.Y., Huang, Y., Rogers, J.A., Lu, C., Koh, C.G.: Buckling of a stiff thin film on a compliant substrate in large deformation. Int. J. Solids Struct. 45, 3107-3121 (2008b) · Zbl 1169.74410 · doi:10.1016/j.ijsolstr.2008.01.023
[36] Song, J., Jiang, H., Huang, Y., Rogers, J.A.: Mechanics of stretchable inorganic electronic materials. J. Vac. Sci. Technol. A 27, 1107-1125 (2009) · doi:10.1116/1.3168555
[37] Sultan, E., Boudaoud, A.: The buckling of a swollen thin gel layer bound to a compliant substrate. J. Appl. Mech. 75, 051002 (2008) · doi:10.1115/1.2936922
[38] Vandeparre, H., Damman, P.: Wrinkling of stimuloresponsive surfaces: mechanical instability coupled to diffusion. Phys. Rev. Lett. 101, 124301 (2008) · doi:10.1103/PhysRevLett.101.124301
[39] Venkataramani, S.C.: Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17, 301-312 (2004) · Zbl 1058.74038 · doi:10.1088/0951-7715/17/1/017
[40] Witten, T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643-675 (2007) · Zbl 1205.74116 · doi:10.1103/RevModPhys.79.643
[41] Yin, J., Chen, X., Sheinman, I.: Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems. J. Mech. Phys. Solids 57, 1470-1484 (2009) · Zbl 1371.74205 · doi:10.1016/j.jmps.2009.06.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.