×

The quadrupole moment of compact binaries to the fourth post-Newtonian order: relating the harmonic and radiative metrics. (English) Zbl 1518.85003

Summary: Motivated by the completion of the fourth post-Newtonian (4PN) gravitational-wave generation from compact binary systems, we analyse and contrast different constructions of the metric outside an isolated system, using post-Minkowskian (PM) expansions. The metric in ‘harmonic’ coordinates has been investigated previously, in particular to compute tails and memory effects. However, it is plagued by powers of the logarithm of the radial distance \(r\) when \(r\to\infty\) (with \(t - r/c = \mathrm{const}\)). As a result, the tedious computation of the ‘tail-of-memory’ effect, which enters the gravitational-wave flux at 4PN order, is more efficiently performed in the so-called ‘radiative’ coordinates, which admit a (Bondi-type) expansion at infinity in simple powers of \(r^{-1}\), without any logarithms. Here we consider a particular construction, performed order by order in the PM expansion, which directly yields a metric in radiative coordinates. We relate both constructions, and prove that they are physically equivalent as soon as a relation between the ‘canonical’ moments which parametrize the radiative metric, and those parametrizing the harmonic metric, is verified. We provide the appropriate relation for the mass quadrupole moment at 4PN order, which will be crucial when deriving the ‘tail-of-memory’ contribution to the gravitational flux.

MSC:

85A05 Galactic and stellar dynamics
70F05 Two-body problems
83C35 Gravitational waves
81P55 Special bases (entangled, mutual unbiased, etc.)
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
81V60 Mono-, di- and multipole moments (EM and other), gyromagnetic relations

Software:

xAct

References:

[1] Maggiore, M., Gravitational Waves: Volume 1: Theory and Experiments, vol 1 (2008), Oxford: Oxford University Press, Oxford
[2] Blanchet, L., Living Rev. Relativ., 17, 2 (2014) · Zbl 1316.83003 · doi:10.12942/lrr-2014-2
[3] Buonanno, A.; Sathyaprakash, B.; Ashtekar, A.; Berger, B.; Isenberg, J.; MacCallum, M., Sources of gravitational waves: Theory and observations, General Relativity and Gravitation: A Centennial Perspective, p 513 (2015), Cambridge: Cambridge University Press, Cambridge · Zbl 1332.83005 · doi:10.1017/CBO9781139583961
[4] Porto, R. A., Phys. Rep., 633, 1 (2016) · Zbl 1359.83024 · doi:10.1016/j.physrep.2016.04.003
[5] Wagoner, R.; Will, C., Astrophys. J., 210, 764 (1976) · doi:10.1086/154886
[6] Blanchet, L.; Schäfer, G., Mon. Not. R. Astron. Soc., 239, 845 (1989) · Zbl 0671.70009 · doi:10.1093/mnras/239.3.845
[7] Blanchet, L.; Damour, T.; Iyer, B. R., Phys. Rev. D, 51, 5360 (1995) · doi:10.1103/PhysRevD.51.5360
[8] Blanchet, L.; Damour, T.; Iyer, B. R.; Will, C. M.; Wiseman, A. G., Phys. Rev. Lett., 74, 3515 (1995) · doi:10.1103/PhysRevLett.74.3515
[9] Will, C.; Wiseman, A., Phys. Rev. D, 54, 4813 (1996) · doi:10.1103/PhysRevD.54.4813
[10] Leibovich, A. K.; Maia, N. T.; Rothstein, I. Z.; Yang, Z., Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.084058
[11] Blanchet, L.; Iyer, B. R.; Joguet, B.; Blanchet, L.; Iyer, B. R.; Joguet, B., Phys. Rev. D. Phys. Rev. D, 71 (2005) · doi:10.1103/PhysRevD.71.129903
[12] Blanchet, L.; Iyer, B. R., Phys. Rev. D, 71 (2004) · doi:10.1103/PhysRevD.71.024004
[13] Blanchet, L.; Damour, T.; Esposito-Farèse, G.; Iyer, B. R., Phys. Rev. Lett., 93 (2004) · doi:10.1103/PhysRevLett.93.091101
[14] Blanchet, L.; Damour, T.; Esposito-Farèse, G.; Iyer, B. R., Phys. Rev. D, 71 (2005) · doi:10.1103/PhysRevD.71.124004
[15] Marchand, T.; Henry, Q.; Larrouturou, F.; Marsat, S.; Faye, G.; Blanchet, L., Class. Quantum Grav., 37 (2020) · Zbl 1479.83041 · doi:10.1088/1361-6382/ab9ce1
[16] Larrouturou, F.; Henry, Q.; Blanchet, L.; Faye, G., Class. Quantum Grav., 39 (2022) · Zbl 1498.83012 · doi:10.1088/1361-6382/ac5762
[17] Larrouturou, F.; Blanchet, L.; Henry, Q.; Faye, G., Class. Quantum Grav., 39 (2022) · Zbl 1498.83011 · doi:10.1088/1361-6382/ac5ba0
[18] Blanchet, L.; Faye, G.; Larrouturou, F., Class. Quantum Grav., 39 (2022) · Zbl 1504.83001 · doi:10.1088/1361-6382/ac840c
[19] Faye, G.; Blanchet, L.; Iyer, B. R., Class. Quantum Grav., 32 (2015) · Zbl 1308.83089 · doi:10.1088/0264-9381/32/4/045016
[20] Henry, Q.; Faye, G.; Blanchet, L., Class. Quantum Grav., 38 (2021) · Zbl 1480.83033 · doi:10.1088/1361-6382/ac1850
[21] Trestini, D.; Blanchet, L., Gravitational-Wave Tails of Memory (2022)
[22] Blanchet, L.; Damour, T., Phil. Trans. R. Soc. A, 320, 379 (1986) · Zbl 0604.35073 · doi:10.1098/rsta.1986.0125
[23] Bondi, H.; van der Burg, M.; Metzner, A., Proc. R. Soc. A, 269, 21 (1962) · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[24] Sachs, R., Proc. R. Soc. A, 270, 103 (1962) · Zbl 0101.43605 · doi:10.1098/rspa.1962.0206
[25] Newman, E. T.; Unti, T., J. Math. Phys., 4, 1467 (1963) · Zbl 0118.22503 · doi:10.1063/1.1703927
[26] Blanchet, L.; Compère, G.; Faye, G.; Oliveri, R.; Seraj, A., J. High Energy Phys., JHEP02(2021)029 (2021) · Zbl 1460.83021 · doi:10.1007/JHEP02(2021)029
[27] Papapetrou, A., Ann. Inst. Henri Poincaré A, XI, 251-75 (1969)
[28] Madore, J., Ann. Inst. Henri Poincaré, 12, 285 (1970)
[29] Madore, J., Ann. Inst. Henri Poincaré, 12, 365 (1970)
[30] Blanchet, L., Proc. R. Soc. A, 409, 383 (1987) · Zbl 0658.35084 · doi:10.1098/rspa.1987.0022
[31] Penrose, R., Phys. Rev. Lett., 10, 66 (1963) · doi:10.1103/PhysRevLett.10.66
[32] Penrose, R., Proc. R. Soc. A, 284, 159 (1965) · Zbl 0129.41202 · doi:10.1098/rspa.1965.0058
[33] Geroch, R.; Horowitz, G., Phys. Rev. Lett., 40, 203 (1978) · doi:10.1103/PhysRevLett.40.203
[34] Blanchet, L.; Damour, T., Phys. Rev. D, 46, 4304 (1992) · doi:10.1103/PhysRevD.46.4304
[35] Blanchet, L., Class. Quantum Grav., 15, 89 (1998) · Zbl 0925.53030 · doi:10.1088/0264-9381/15/1/008
[36] Blanchet, L., Class. Quantum Grav., 15, 113 (1998) · Zbl 0925.53027 · doi:10.1088/0264-9381/15/1/009
[37] Marchand, T.; Blanchet, L.; Faye, G., Class. Quantum Grav., 33 (2016) · Zbl 1354.83004 · doi:10.1088/0264-9381/33/24/244003
[38] Sachs, R.; Bergmann, P., Phys. Rev., 112, 674 (1958) · Zbl 0083.43001 · doi:10.1103/PhysRev.112.674
[39] Pirani, F., Introduction to Gravitational Radiation Theory (Brandeis Summer Institute in Theoretical Physics vol 1), pp 249-373 (1964), Englewood Cliffs: Prentice-Hall, Englewood Cliffs
[40] Thorne, K., Rev. Mod. Phys., 52, 299 (1980) · doi:10.1103/RevModPhys.52.299
[41] Martín-García, J. M., xAct: efficient tensor computer algebra for mathematica (2002)
[42] Goldberger, W.; Ross, A., Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.124015
[43] Goldberger, W. D.; Ross, A.; Rothstein, I. Z., Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.124033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.