×

The quadrupole moment of compact binaries to the fourth post-Newtonian order. I: Non-locality in time and infra-red divergencies. (English) Zbl 1498.83012

Summary: With the aim of providing high accuracy post-Newtonian (PN) templates for the analysis of gravitational waves generated by compact binary systems, we complete the analytical derivation of the source type mass quadrupole moment of compact binaries (without spins) at the fourth PN order of general relativity. Similarly to the case of the conservative 4PN equations of motion, we show that the quadrupole moment at that order contains a non-local (in time) contribution, arising from the tail-transported interaction entering the conservative part of the dynamics. Furthermore, we investigate the infra-red (IR) divergences of the quadrupole moment. In a previous work, this moment has been computed using a Hadamard partie finie procedure for the IR divergences, but the knowledge of the conservative equations of motion indicates that those divergences have to be dealt with by means of dimensional regularization. This work thus derives the difference between the two regularization schemes, which has to be added on top of the previous result. We show that unphysical IR poles start to appear at the 3PN order, and we determine all of these up to the 4PN order. In particular, the non-local tail term comes in along with a specific pole at the 4PN order. It will be proven in a companion paper that the poles in the source-type quadrupole are cancelled in the physical radiative type quadrupole moment measured at future null infinity.
For Part II, see [the authors, ibid. 39, No. 11, Article ID 115008, 25 p. (2022; Zbl 1498.83011)].

MSC:

83C35 Gravitational waves
83C57 Black holes
70F05 Two-body problems
81V35 Nuclear physics
81V60 Mono-, di- and multipole moments (EM and other), gyromagnetic relations

Citations:

Zbl 1498.83011

References:

[1] Maggiore, M., Gravitational Waves: Volume 1: Theory and Experiments, vol 1 (2008), Oxford: Oxford University Press, Oxford
[2] Blanchet, L., Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., 17, 2 (2014) · Zbl 1316.83003 · doi:10.12942/lrr-2014-2
[3] Buonanno, A.; Sathyaprakash, B.; Ashtekar, A.; Berger, B.; Isenberg, J.; MacCallum, M., Sources of gravitational waves: theory and observations, General Relativity and Gravitation: A Centennial Perspective, p 513 (2015)
[4] Porto, R. A., The effective field theorist’s approach to gravitational dynamics, Phys. Rep., 633, 1-104 (2016) · Zbl 1359.83024 · doi:10.1016/j.physrep.2016.04.003
[5] Damour, T.; Jaranowski, P.; Schäfer, G., Non-local-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems, Phys. Rev. D, 89 (2014) · doi:10.1103/physrevd.89.064058
[6] Damour, T.; Jaranowski, P.; Schäfer, G., On the conservative dynamics of two-body systems at the fourth post-Newtonian approximation of general relativity, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.084014
[7] Bernard, L.; Blanchet, L.; Bohé, A.; Faye, G.; Marsat, S., Fokker action of non-spinning compact binaries at the fourth post-Newtonian approximation, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.084037
[8] Bernard, L.; Blanchet, L.; Bohé, A.; Faye, G.; Marsat, S., Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.104043
[9] Marchand, T.; Bernard, L.; Blanchet, L.; Faye, G., Ambiguity-free completion of the equations of motion of compact binary systems at the fourth post-Newtonian order, Phys. Rev. D, 97 (2018) · doi:10.1103/physrevd.97.044023
[10] Galley, C. R.; Leibovich, A. K.; Porto, R. A.; Ross, A., Tail effect in gravitational radiation reaction: time nonlocality and renormalization group evolution, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.124010
[11] Porto, R.; Rothstein, I., On the apparent ambiguities in the post-Newtonian expansion for binary systems, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.024062
[12] Foffa, S.; Sturani, R., Conservative dynamics of binary systems to fourth post-Newtonian order in the EFT approach: I. Regularized Lagrangian, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.024047
[13] Foffa, S.; Porto, R.; Rothstein, I.; Sturani, R., Conservative dynamics of binary systems to fourth post-Newtonian order in the EFT approach: II. Renormalized Lagrangian, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.024048
[14] Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G., Fourth post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach (2020) · Zbl 1473.83010
[15] Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G., The fifth-order post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach: potential contributions, Nucl. Phys. B, 965 (2021) · Zbl 1489.83002 · doi:10.1016/j.nuclphysb.2021.115352
[16] Bini, D.; Damour, T.; Geralico, A., Sixth post-Newtonian local-in-time dynamics of binary systems, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.024061
[17] Bern, Z.; Cheung, C.; Roiban, R.; Shen, C-H; Solon, M. P.; Zeng, M., Scattering amplitudes and the conservative Hamiltonian for binary systems at third post-Minkowskian order, Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.201603
[18] Blanchet, L.; Damour, T.; Iyer, B. R., Gravitational waves from inspiralling compact binaries: energy loss and waveform to second-post-Newtonian order, Phys. Rev. D, 51, 5360 (1995) · doi:10.1103/physrevd.51.5360
[19] Will, C. M.; Wiseman, A. G., Gravitational radiation from compact binary systems: gravitational waveforms and energy loss to second post-Newtonian order, Phys. Rev. D, 54, 4813 (1996) · doi:10.1103/physrevd.54.4813
[20] Blanchet, L.; Blanchet, L., Energy losses by gravitational radiation in inspiralling compact binaries to five halves post-Newtonian order, Phys. Rev. D. Phys. Rev. D, 71, 129904(E) (2005) · doi:10.1103/physrevd.71.129904
[21] Blanchet, L.; Iyer, B. R., Hadamard regularization of the third post-Newtonian gravitational wave generation of two point masses, Phys. Rev. D, 71 (2004) · doi:10.1103/physrevd.71.024004
[22] Blanchet, L.; Damour, T.; Esposito-Farèse, G.; Iyer, B. R., Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses, Phys. Rev. D, 71 (2005) · doi:10.1103/physrevd.71.124004
[23] Blanchet, L., Gravitational-wave tails of tails, Class. Quantum Grav., 15, 113 (1998) · Zbl 0925.53027 · doi:10.1088/0264-9381/15/1/009
[24] Blanchet, L.; Faye, G.; Iyer, B. R.; Joguet, B.; Blanchet, L.; Faye, G.; Iyer, B. R.; Joguet, B., Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order, Phys. Rev. D. Phys. Rev. D, 71, 129902(E) (2005) · doi:10.1103/physrevd.71.129902
[25] Blanchet, L.; Faye, G.; Iyer, B. R.; Sinha, S., The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits, Class. Quantum Grav., 25 (2008) · Zbl 1147.83300 · doi:10.1088/0264-9381/25/16/165003
[26] Faye, G.; Marsat, S.; Blanchet, L.; Iyer, B. R., The third and a half-post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries, Class. Quantum Grav., 29 (2012) · Zbl 1251.83012 · doi:10.1088/0264-9381/29/17/175004
[27] Henry, Q.; Faye, G.; Blanchet, L., The current-type quadrupole moment and gravitational-wave mode (ℓ, m) = (2, 1) of compact binary systems at the third post-Newtonian order, Class. Quantum Grav., 38 (2021) · Zbl 1480.83033 · doi:10.1088/1361-6382/ac1850
[28] Faye, G.; Blanchet, L.; Iyer, B. R., Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order, Class. Quantum Grav., 32 (2015) · Zbl 1308.83089 · doi:10.1088/0264-9381/32/4/045016
[29] Leibovich, A. K.; Maia, N. T.; Rothstein, I. Z.; Yang, Z., Second post-Newtonian order radiative dynamics of inspiralling compact binaries in the Effective Field Theory approach, Phys. Rev. D, 101 (2020) · doi:10.1103/physrevd.101.084058
[30] Marchand, T.; Blanchet, L.; Faye, G., Gravitational-wave tail effects to quartic non-linear order, Class. Quantum Grav., 33 (2016) · Zbl 1354.83004 · doi:10.1088/0264-9381/33/24/244003
[31] Marchand, T.; Henry, Q.; Larrouturou, F.; Marsat, S.; Faye, G.; Blanchet, L., The mass quadrupole moment of compact binary systems at the fourth post-Newtonian order, Class. Quantum Grav., 37 (2020) · Zbl 1479.83041 · doi:10.1088/1361-6382/ab9ce1
[32] Hadamard, J., Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques (1932), Paris: Hermann, Paris · Zbl 0006.20501
[33] Blanchet, L.; Damour, T., Tail-transported temporal correlations in the dynamics of a gravitating system, Phys. Rev. D, 37, 1410 (1988) · doi:10.1103/physrevd.37.1410
[34] Larrouturou, F.; Blanchet, L.; Henry, Q.; Faye, G., The quadrupole moment of compact binaries to the fourth post-Newtonian order: II. Dimensional regularization and renormalization (2021)
[35] Blanchet, L.; Damour, T.; Esposito-Farèse, G.; Iyer, B. R., Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order, Phys. Rev. Lett., 93 (2004) · doi:10.1103/physrevlett.93.091101
[36] Blanchet, L., On the multipole expansion of the gravitational field, Class. Quantum Grav., 15, 1971 (1998) · Zbl 0937.83008 · doi:10.1088/0264-9381/15/7/013
[37] Blanchet, L.; Damour, T.; Esposito-Farèse, G., Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates, Phys. Rev. D, 69 (2004) · doi:10.1103/physrevd.69.124007
[38] Hartung, J.; Steinhoff, J.; Schäfer, G., Next-to-next-to-leading order post-Newtonian linear-in-spin binary Hamiltonians, Ann. Phys., Lpz., 525, 359 (2013) · Zbl 1269.83016 · doi:10.1002/andp.201200271
[39] Goldberger, W. D.; Ross, A., Gravitational radiative corrections from effective field theory, Phys. Rev. D, 81 (2010) · doi:10.1103/physrevd.81.124015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.