×

The impact of radiation on the development of lung cancer. (English) Zbl 1382.92164

Summary: Environment factors such as radiation play an important role in the incidence of lung cancer. In spite of substantial efforts in experimental study and mathematical modeling, it is still a significant challenge to estimate lung cancer risk from radiation. To address this issue, we propose a stochastic model to investigate the impact of radiation on the development of lung cancer. The proposed three-stage model with clonal expansion is used to match the data of the male and female patients in the Osaka Cancer Registry (OCR) and Life Span Study (LSS) cohort of atomic bomb survivors in Hiroshima and Nagasaki. Our results indicate that the major effect of radiation on the development of lung cancer is to induce gene mutations for both male and female patients. In particular, for male patients, radiation affects the mutation in normal cells and the transformation from premalignant cells to malignant ones. However, radiation for female patients increases the mutation rates of the first two mutations in the stochastic model. The established relationship between parameters and radiation will provide insightful prediction for the lung cancer incidence in the radiation exposure.

MSC:

92C50 Medical applications (general)

Software:

pyuvdata
Full Text: DOI

References:

[1] Armitage, P.; Doll, R., The age distribution of cancer and multi-stage theory of carcinogenesis, Br. J. Cancer, 8, 1-12 (1954)
[2] Armitage, P.; Doll, R., A two-stage theory of carcinogenesis in relation to the age distribution of human cancer, Br. J. Cancer, 9, 161-169 (1957)
[3] Cahoon, E. K.; Preston, D. L.; Pierce, D. A.; Grant, E.; Brenner, A. V.; Mabuchi, K.; Mai, U.; Ozasa, K., Lung, laryngeal and other respiratory cancer incidence among Japanese atomic bomb survivors: an updated analysis from 1958 through 2009, Radiat. Res., 187, 538-548 (2017)
[4] Christopher, J. P.; Kopp-Schneider, A.; Sherman, C. D., Calculating tumor incidence rates in stochastic models of catcinogenesis, Math. Biosci., 135, 129-146 (1996) · Zbl 0859.92013
[5] Dela Cruz, C. S.; Tanoue, L. T.; Matthay, R. A., Lung cancer: epidemiology, etiology, and prevention, Clin. Chest Med., 32, 605-644 (2011)
[6] Egawa, H.; Furukawa, K.; Preston, D.; Funamoto, S.; Yonehara, S.; Matsuo, T.; Tokuoka, S.; Suyama, A.; Ozasa, K.; Kodama, K., Radiation and smoking effects on lung cancer incidence by histological types among atomic bomb survivors, Radiat. Res., 178, 191-201 (2012)
[7] Fakir, H.; Hofmann, W.; Sachs, R. K., Modeling progression in radiation-induced lung adenocarcinomas, Radiat. Environ. Biophys., 49, 169-176 (2010)
[8] Grant, E. J.; Brenner, A.; Sugiyama, H.; Sakata, R.; Sadakane, A.; Utada, M.; Cahoon, E. K.; Milder, C. M.; Soda, M.; Cullings, H. M.; Preston, D. L.; Mabuchi, K.; Ozasa, K., Solid cancer incidence among the Life Span Study of atomic bomb survivors: 1958-2009, Radiat. Res., 187, 513-537 (2017)
[9] Harris, T. E., The Theory of Branching Processes (1963), Springer-Verlag Berlin Heidelberg · Zbl 0117.13002
[10] Hazelton, W. D.; Luebeck, E. G.; Heidenreich, W. F.; Moolgavkar, S. H., Analysis of a historical cohort of Chinese tin miners with arsenic, radon, cigarette smoke, and pipe smoke exposures using the biologically based two-stage clonal expansion model, Radiat. Res., 156, 78-94 (2014)
[11] Hazelton, W. D.; Moolgavkar, S. H.; Curtis, S. B.; Zielinski, J. M.; Ashmore, J. P.; Krewski, D., Biologically based analysis of lung cancer incidence in a large Canadian occupational cohort with low-dose ionizing radiation exposure, and comparison with Japanese atomic bomb survivors, J. Toxicol. Environ. Health A, 69, 1013-1038 (2006)
[12] Heidenreich, W. F.; Jacob, P.; Paretzke, H. G., Exact solutions of the clonal expansion model and their application to the incidence of solid tumors of atomic bomb survivors, Radiat. Environ. Biophys., 36, 45-58 (1997)
[13] Kodama, K.; Mabuchi, K.; Shigematsu, I., A long-term cohort study of the atomic-bomb survivors, J. Epidemiol., 6, S95-S105 (1996)
[14] Little, M. P.; Haylock, R. G.; Muirhead, C. R., Modelling lung tumour risk in radon-exposed uranium miners using generalizations of the two-mutation model of Moolgavkar, Venzon and Knudson, Int. J. Radiat. Biol., 78, 49-68 (2002)
[15] Little, M. P.; Vineis, P.; Li, G., A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data, J. Theor. Biol., 254, 229-238 (2008) · Zbl 1400.92269
[16] Moolgavkar, S. H.; Chang, E. T.; Luebeck, G.; Lau, E. C.; Watson, H. N.; Crump, K. S.; Boffetta, P.; Mcclellan, R., Diesel engine exhaust and lung cancer mortality: time-related factors in exposure and risk, Risk Anal., 35, 663-675 (2015)
[17] Moolgavkar, S. H.; Dewanji, A.; Venzon, D. J., A stochastic two-stage model for cancer risk assessment. I. The hazard function and the probability of tumor, Risk Anal., 8, 383-392 (1988)
[18] Moolgavkar, S. H.; Holford, T. R.; Levy, D. T.; Kong, C. Y.; Foy, M.; Clarke, L.; Jeon, J.; Hazelton, W. D.; Meza, R.; Schultz, F., Impact of reduced tobacco smoking on lung cancer mortality in the United States during 1975-2000, J. Natl. Cancer Inst., 104, 1-7 (2012)
[19] Moolgavkar, S. H.; Venzon, D. J., Two-event models for carcinogenesis: incidence curves for childhood and adult tumors, Math. Biosci., 47, 55-77 (1979) · Zbl 0422.92006
[20] Ozasa, K., Epidemiological research on radiation-induced cancer in atomic bomb survivors, Radiat. Res., 57, Suppl 1, i112-i117 (2016)
[21] Parkin, D. M.; Bray, F.; Ferlay, J.; Pisani, P., Global cancer statistics, 2002, CA Cancer J. Clin., 55, 74-108 (2005)
[22] Preston, D. L.; Ron, E.; Tokuoka, S.; Funamoto, S.; Nishi, N.; Soda, M.; Mabuchi, K.; Kodama, K., Solid cancer incidence in atomic bomb survivors: 1958-1998, Radiat. Res., 168, 1-64 (2007)
[23] Richardson, D. B.; Hamra, G., Ionizing radiation and kidney cancer among Japanese atomic bomb survivors, Radiat. Res., 173, 837-842 (2010)
[24] Song, W.; Powers, S.; Wei, Z.; Hannun, Y. A., Substantial contribution of extrinsic risk factors to cancer development, Nature, 529, 43-47 (2015)
[25] Thompson, D. E.; Soda, M.; Izumi, S.; Mabuchi, K.; Ron, E.; Tokunaga, M.; Ochikubo, S.; Sugimoto, S.; Ikeda, T.; Terasaki, M., Cancer incidence in atomic bomb survivors. part II: Solid tumors, 1958-1987, Radiat. Res., 137, S17-S67 (1994)
[26] Tokarskaya, Z. B.; Okladnikova, N. D.; Belyaeva, Z. D.; Drozhko, E. G., The influence of radiation and nonradiation factors on the lung cancer incidence among the workers of the nuclear enterprise Mayak, Health Phys., 69, 356-366 (1995)
[27] Tomasetti, C.; Marchionni, L.; Nowak, M. A.; Parmigiani, G.; Vogelstein, B., Only three driver gene mutations are required for the development of lung and colorectal cancers, Proc. Natl. Acad. Sci. U S A, 112, 118-123 (2015)
[28] Vogelstein, B.; Kinzler, K. W., Cancer genes and the pathways they control, Nat. Med., 10, 789-799 (2004)
[29] Yoshimi, I.; Ohshima, A.; Ajiki, W.; Tsukuma, H.; Sobue, T., A comparison of trends in the incidence rate of lung cancer by histological type in the Osaka cancer registry, Japan and in the surveillance, epidemiology and end results program, USA, Jpn. J. Clin. Oncol., 33, 98-104 (2003)
[30] Zöllner, S.; Sokolnikov, M. E.; Eidemüller, M., Beyond two-stage models for lung carcinogenesis in the Mayak Workers: implications for plutonium risk, PLoS ONE, 10, 1-20 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.