×

A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data. (English) Zbl 1400.92269

J. Theor. Biol. 254, No. 2, 229-238 (2008); erratum ibid. 255, No. 2, 268 (2008).
Summary: A generalization of the two-mutation stochastic carcinogenesis model of Moolgavkar, Venzon and Knudson and certain models constructed by the first author [Biometrics 51, No. 4, 1278–1291 (1995; Zbl 0899.62137)] and the first author and E. G. Wright [Math. Biosci. 183, No. 2, 111–134 (2003; Zbl 1024.92012)] is developed; the model incorporates multiple types of progressive genomic instability and an arbitrary number of mutational stages. The model is fitted to US Caucasian colon cancer incidence data. On the basis of the comparison of fits to the population-based data, there is little evidence to support the hypothesis that the model with more than one type of genomic instability fits better than models with a single type of genomic instability. Given the good fit of the model to this large dataset, it is unlikely that further information on presence of genomic instability or of types of genomic instability can be extracted from age-incidence data by extensions of this model.

MSC:

92C50 Medical applications (general)
62P10 Applications of statistics to biology and medical sciences; meta analysis
35Q92 PDEs in connection with biology, chemistry and other natural sciences

Software:

NAG; nag; bootlib
Full Text: DOI

References:

[1] Akaike, H., Information theory and an extension of the maximum likelihood principle, (), 267-281 · Zbl 0283.62006
[2] Armitage, P.; Doll, R., The age distribution of cancer and a multi-stage theory of carcinogenesis, Br. J. cancer, 8, 1-12, (1954)
[3] Bardelli, A.; Cahill, D.P.; Lederer, G.; Speicher, M.R.; Kinzler, K.W.; Vogelstein, B.; Lengauer, C., Carcinogen-specific induction of genetic instability, Proc. natl acad. sci. USA, 98, 5770-5775, (2001)
[4] Beerenwinkel, N.; Antal, T.; Dingli, D.; Traulsen, A.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B.; Nowak, M.A., Genetic progression and the waiting time to cancer, Plos comput. biol., 3, 11, e225, (2007)
[5] Bhattacharyya, N.P.; Skandalis, A.; Ganesh, A.; Groden, J.; Meuth, M., Mutator phenotypes in human colorectal carcinoma cell lines, Proc. natl acad. sci. USA, 91, 6319-6323, (1994)
[6] Breivik, J., Don’t stop for repairs in a war zone: Darwinian evolution unites genes and environment in cancer development, Proc. natl acad. sci. USA, 98, 5379-5381, (2001)
[7] Breivik, J., The evolutionary origin of genetic instability in cancer development, Semin. cancer biol., 15, 51-60, (2005)
[8] Bronner, C.E.; Baker, S.M.; Morrison, P.T.; Warren, G.; Smith, L.G.; Lescoe, M.K.; Kane, M.; Earabino, C.; Lipford, J.; Lindblom, A.; Tannergård, P.; Bollag, R.J.; Godwin, A.R.; Ward, D.C.; Nordenskjold, M.; Fishel, R.; Kolodner, R.; Liskay, R.M., Mutation in the DNA mismatch repair gene homologue hmlh1 is associated with hereditary non-polyposis colon cancer, Nature, 368, 258-261, (1994)
[9] Cahill, D.P.; Lengauer, C.; Yu, J.; Riggins, G.J.; Willson, J.K.V.; Markowitz, S.D.; Kinzler, K.W.; Vogelstein, B., Mutations of mitotic checkpoint genes in human cancers, Nature, 392, 300-303, (1998)
[10] Davison, A.C.; Hinkley, D.V., Bootstrap methods and their application, (1997), Cambridge University Press Cambridge · Zbl 0886.62001
[11] Degnen, G.E.; Cox, E.C., Conditional mutator gene in Escherichia coli: isolation, mapping, and effector studies, J. bacteriol., 117, 477-487, (1974)
[12] Denko, N.C.; Giaccia, A.J.; Stringer, J.R.; Stambrook, P.J., The human ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle, Proc. natl acad. sci. USA, 91, 5124-5128, (1994)
[13] Felsher, D.W.; Bishop, J.M., Transient excess of MYC activity can elicit genomic instability and tumorigenesis, Proc. natl acad. sci. USA, 96, 3940-3944, (1999)
[14] Fishel, R.; Lescoe, M.K.; Rao, M.R.; Copeland, N.G.; Jenkins, N.A.; Garber, J.; Kane, M.; Kolodner, R., The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer, Cell, 75, 1027-1038, (1993)
[15] Fodde, R.; Kuipers, J.; Rosenberg, C.; Smits, R.; Kielman, M.; Gaspar, C.; van Es, J.H.; Breukel, C.; Wiegant, J.; Giles, R.H.; Clevers, H., Mutations in the APC tumour suppressor gene cause chromosomal instability, Nat. cell biol., 3, 433-438, (2001)
[16] Frank, S.A., Age-specific incidence of inherited versus sporadic cancers: a test of the multistage theory of carcinogenesis, Proc. natl acad. sci. USA, 102, 1071-1075, (2005)
[17] Hornsby, C.; Page, K.M.; Tomlinson, I.P.M., What can we learn from the population incidence of cancer? armitage and doll revisited, Lancet oncol., 8, 1030-1038, (2007)
[18] Jaffrey, R.; Pritchard, S.; Clark, C.; Murray, G.; Cassidy, J.; Kerr, K.; Nicolson, M.; McLeod, H., Genomic instability at the BUB1 locus in colorectal cancer, but not in non-small cell lung cancer, Cancer res., 60, 4349-4352, (2000)
[19] Kim, I.-J.; Kang, H.C.; Park, J.-H.; Shin, Y.; Ku, J.-L.; Lim, S.-B.; Park, S.Y.; Jung, S.-Y.; Kim, H.K.; Park, J.-G., Development and applications of a β-catenin oligonucleotide microarray: β-catenin mutations are dominantly found in the proximal colon cancers with microsatellite instability, Clin. cancer res., 9, 2920-2925, (2003)
[20] Knudson, A.G., Mutation and cancer: statistical study of retinoblastoma, Proc. natl acad. sci. USA, 68, 820-823, (1971)
[21] Kolodner, R.D.; Putnam, C.D.; Myung, K., Maintenance of genome stability in saccharomyces cerevisiae, Science, 297, 552-557, (2002)
[22] Komarova, N.L.; Sengupta, A.; Nowak, M.A., Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability, J. theor. biol., 223, 433-450, (2003) · Zbl 1464.92067
[23] Lancy, E.D.; Lifsics, M.R.; Kehres, D.G.; Maurer, R., Isolation and characterization of mutants with deletions in dnaq, the gene for the editing subunit of DNA polymerase III in salmonella typhimurium, J. bacteriol., 171, 5572-5580, (1989)
[24] Leach, F.S.; Nicolaides, N.C.; Papadopoulos, N.; Liu, B.; Jen, J.; Parsons, R.; Peltomäki, P.; Sistonen, P.; Aaltonen, L.A.; Nyström-Lahti, M.; Guan, X.-Y.; Zhang, J.; Meltzer, P.S.; Yu, J.-W.; Kao, F.-T.; Chen, D.J.; Cerosaletti, K.M.; Fournier, R.E.K.; Todd, S.; Lewis, T.; Leach, R.J.; Naylor, S.L.; Weissenbach, J.; Mecklin, J.-P.; Järvinen, H.; Petersen, G.M.; Hamilton, S.R.; Green, J.; Jass, J.; Watson, P.; Lynch, H.T.; Trent, J.M.; de la Chapelle, A.; Kinzler, K.W.; Vogelstein, B., Mutations of a muts homolog in hereditary nonpolyposis colorectal cancer, Cell, 75, 1215-1225, (1993)
[25] Lengauer, C.; Kinzler, K.W.; Vogelstein, B., DNA methylation and genetic instability in colorectal cancer cells, Proc. natl acad. sci. USA, 94, 2545-2550, (1997)
[26] Lengauer, C.; Kinzler, K.W.; Vogelstein, B., Genetic instabilities in human cancers, Nature, 396, 643-649, (1998)
[27] Li, Y.; Benezra, R., Identification of a human mitotic checkpoint gene: hsmad2, Science, 274, 246-248, (1996)
[28] Li, G., Stiller, C., Murphy, M., Kroll, M., Little, M.P., 2008. Analysis of retinoblastoma data using a fully stochastic cancer model. Int. J. Cancer, submitted for publication.; Li, G., Stiller, C., Murphy, M., Kroll, M., Little, M.P., 2008. Analysis of retinoblastoma data using a fully stochastic cancer model. Int. J. Cancer, submitted for publication.
[29] Little, M.P., Are two mutations sufficient to cause cancer? some generalizations of the two-mutation model of carcinogenesis of moolgavkar, venzon, and knudson, and of the multistage model of armitage and doll, Biometrics, 51, 1278-1291, (1995) · Zbl 0899.62137
[30] Little, M.P.; Li, G., Stochastic modelling of colon cancer: is there a role for genomic instability?, Carcinogenesis, 28, 479-487, (2007)
[31] Little, M.P.; Wright, E.G., A stochastic carcinogenesis model incorporating genomic instability fitted to colon cancer data, Math. biosci., 183, 111-134, (2003) · Zbl 1024.92012
[32] Little, M.P., Heidenreich, W.F., Li, G., 2008. Parameter identifiability and redundancy. II. Applications to a general class of stochastic carcinogenesis models. J. Theoret. Biol. submitted for publication.; Little, M.P., Heidenreich, W.F., Li, G., 2008. Parameter identifiability and redundancy. II. Applications to a general class of stochastic carcinogenesis models. J. Theoret. Biol. submitted for publication.
[33] Loeb, L.A., Mutator phenotype may be required for multistage carcinogenesis, Cancer res., 51, 3075-3079, (1991)
[34] Loeb, L.A., A mutator phenotype in cancer, Cancer res., 61, 3230-3239, (2001)
[35] Luebeck, E.G.; Moolgavkar, S.H., Multistage carcinogenesis and the incidence of colorectal cancer, Proc. natl acad. sci. USA, 99, 15095-15100, (2002)
[36] McCullagh, P.; Nelder, J.A., Generalized linear models, (1989), Chapman and Hall London · Zbl 0744.62098
[37] Michor, F.; Iwasa, Y.; Rajagopalan, H.; Lengauer, C.; Nowak, M.A., Linear model of colon cancer initiation, Cell cycle, 3, 358-362, (2004)
[38] Milner, J.; Ponder, B.; Hughes-Davies, L.; Seltmann, M.; Kouzarides, T., Transcriptional activation functions in BRCA2, Nature, 386, 772-773, (1997)
[39] Moolgavkar, S.H.; Venzon, D.J., Two-event models for carcinogenesis: incidence curves for childhood and adult tumors, Math. biosci., 47, 55-77, (1979) · Zbl 0422.92006
[40] Moslein, G.; Tester, D.J.; Lindor, N.M.; Honchel, R.; Cunningham, J.M.; French, A.J.; Halling, K.C.; Schwab, M.; Goretzki, P.; Thibodeau, S.N., Microsatellite instability and mutation analysis of hmsh2 and hmlh1 in patients with sporadic, familial and hereditary colorectal cancer, Hum. mol. genet., 5, 1245-1252, (1996)
[41] Numerical Algorithms Group, NAG FORTRAN Library, Mark 21, Numerical Algorithms Group, Oxford, 2005.; Numerical Algorithms Group, NAG FORTRAN Library, Mark 21, Numerical Algorithms Group, Oxford, 2005.
[42] Nasmyth, K., Segregating sister genomes: the molecular biology of chromosome separation, Science, 297, 559-565, (2002)
[43] Nowak, M.A.; Komarova, N.L.; Sengupta, A.; Jallepalli, P.V.; Shih, I.-M.; Vogelstein, B.; Lengauer, C., The role of chromosomal instability in tumor initiation, Proc. natl acad. sci. USA, 99, 16226-16231, (2002)
[44] Oller, A.R.; Rastogi, P.; Morgenthaler, S.; Thilly, W.G., A statistical model to estimate variance in long term-low dose mutation assays: testing of the model in a human lymphoblastoid mutation assay, Mutat. res., 216, 149-161, (1989)
[45] Papadopoulos, N.; Nicolaides, N.C.; Wei, Y.-F.; Ruben, S.M.; Carter, K.C.; Rosen, C.A.; Haseltine, W.A.; Fleischmann, R.D.; Fraser, C.M.; Adams, M.D.; Venter, J.C.; Hamilton, S.R.; Petersen, G.M.; Watson, P.; Lynch, H.T.; Peltomäki, P.; Mecklin, J.-P.; de la Chapelle, A.; Kinzler, K.W.; Vogelstein, B., Mutation of a mutl homolog in hereditary colon cancer, Science, 263, 1625-1629, (1994)
[46] Potten, C.S.; Booth, C.; Hargreaves, D., The small intestine as a model for evaluating adult tissue stem cell drug targets, Cell prolif., 36, 115-129, (2003)
[47] Rajagopalan, H.; Jallepalli, P.V.; Rago, C.; Velculescu, V.E.; Kinzler, K.W.; Vogelstein, B.; Lengauer, C., Inactivation of hcdc4 can cause chromosomal instability, Nature, 428, 77-81, (2004)
[48] Samowitz, W.S.; Holden, J.A.; Curtin, K.; Edwards, S.L.; Walker, A.R.; Lin, H.A.; Robertson, M.A.; Nichols, M.F.; Gruenthal, K.M.; Lynch, B.J.; Leppert, M.F.; Slattery, M.L., Inverse relationship between microsatellite instability and K-ras and p53 gene alterations in colon cancer, Am. J. pathol., 158, 1517-1524, (2001)
[49] Surveillance, Epidemiology and End Results (SEER) Registry Public-use data, 1973-2002, 2005. Cancer Statistics Branch, Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA (http://seer.cancer.gov/; Surveillance, Epidemiology and End Results (SEER) Registry Public-use data, 1973-2002, 2005. Cancer Statistics Branch, Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA (http://seer.cancer.gov/
[50] Tomlinson, I.; Bodmer, W., Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog, Nat. med., 5, 11-12, (1999)
[51] Vineis, P.; Berwick, M., The population dynamics of cancer: a Darwinian perspective, Int. J. epidemiol., 35, 1151-1159, (2006)
[52] Voskuil, D.W.; Vasen, H.F.A.; Kampman, E.; van’t Veer, P., Colorectal cancer risk in HNPCC families: development during lifetime and in successive generations, Int. J. cancer, 72, 205-209, (1997)
[53] Yarden, R.I.; Pardo-Reoyo, S.; Sgagias, M.; Cowan, K.H.; Brody, L.C., BRCA1 regulates the G2/M checkpoint by activating chk1 kinase upon DNA damage, Nat. genet., 30, 265-269, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.