×

Damage spreading in the Bak-Sneppen and ballistic deposition models: critical dynamics and nonextensivity. (English) Zbl 1059.37071

Summary: We introduce a new damage spreading algorithm which is able to capture both the long-time and short-time dynamics of extended systems which evolves towards a critical statistically stationary state. In this sense, the dynamics of systems exhibiting self-organized critical states is shown to be similar to the one observed at the usual critical point of continuous phase transitions and at the onset of chaos of nonlinear low-dimensional dynamical maps. The proposed algorithm is applied to the Bak-Sneppen model of biological evolution and the ballistic deposition model of surface growth. The critical dynamics of these models are discussed within the framework of a nonextensive statistics formalism.

MSC:

37N25 Dynamical systems in biology
92D15 Problems related to evolution
37E99 Low-dimensional dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
Full Text: DOI

References:

[1] Tsallis, C., J. Stat. Phys., 52, 479 (1988) · Zbl 1082.82501
[2] C. Tsallis, in: S. Abe, Y. Okamoto (Eds.), Nonextensive Statistical Mechanics and its Applications, Springer-Verlag, Berlin, 2001 (lecture notes in physics).; C. Tsallis, in: S. Abe, Y. Okamoto (Eds.), Nonextensive Statistical Mechanics and its Applications, Springer-Verlag, Berlin, 2001 (lecture notes in physics). · Zbl 0994.82001
[3] Tsallis, C.; Plastino, A. R.; Zhang, W.-M., Chaos Solitons Fractals, 8, 885 (1997) · Zbl 0933.37049
[4] U.M.S. Costa, et al., Phys. Rev. E. 56 (1997) 245.; U.M.S. Costa, et al., Phys. Rev. E. 56 (1997) 245.
[5] Lyra, M. L.; Tsallis, C., Phys. Rev. Lett., 80, 53 (1998)
[6] da Silva, C. R.; da Cruz, H. R.; Lyra, M. L., Braz. J. Phys., 29, 144 (1999)
[7] Tirnakli, U.; Tsallis, C.; Lyra, M. L., Eur. Phys. J. B, 11, 309 (1999)
[8] Tirnakli, U.; Tsallis, C.; Lyra, M. L., Phys. Rev. E, 65, 036207 (2002)
[9] Tirnakli, U., Physica A, 305, 119 (2002) · Zbl 1098.37542
[10] Tirnakli, U., Phys. Rev. E, 66, 066212 (2002)
[11] Baldovin, F.; Robledo, A., Phys. Rev. E, 66, 045104(R) (2002)
[12] de Moura, F. A.B. F.; Tirnakli, U.; Lyra, M. L., Phys. Rev. E, 62, 6361 (2000)
[13] Janssen, H. K.; Schaub, B.; Schmittmann, B., Z. Phys. B, 73, 539 (1989)
[14] Bak, P.; Sneppen, K., Phys. Rev. Lett., 71, 4083 (1993)
[15] A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, 1995 and references therein.; A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, 1995 and references therein. · Zbl 0838.58023
[16] Tamarit, F. A.; Cannas, S. A.; Tsallis, C., Eur. Phys. J. B, 1, 545 (1998)
[17] Gleiser, P. M.; Tamarit, F. A.; Cannas, S. A., Physica A, 275, 272 (2000)
[18] Cafiero, R.; Valleriani, A.; Vega, J. L., Eur. Phys. J. B, 7, 505 (1999)
[19] Cafiero, R.; Valleriani, A.; Vega, J. L., Eur. Phys. J. B, 4, 405 (1998)
[20] Valleriani, A.; Vega, J. L., J. Phys. A: Math. Gen., 32, 105 (1999) · Zbl 0989.37078
[21] Paczuski, M.; Maslov, S.; Bak, P., Phys. Rev. E, 53, 414 (1996)
[22] Gould, S. J.; Eldredge, N., Nature, 366, 223 (1993)
[23] Tsallis, C.; Bemski, G.; Mendes, R. S., Phys. Lett. A, 257, 93 (1999)
[24] Montemurro, M. A., Physica A, 300, 567 (2001) · Zbl 0978.68126
[25] Tsallis, C.; Anjos, J. C.; Borges, E. P., Phys. Lett. A, 310, 372 (2003)
[26] Park, H.; Ha, M.; Kim, I., Phys. Rev. E, 51, 1047 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.