×

Chemically induced deformation of a porous layer coupled with advective-dispersive transport. Analytical solutions. (English) Zbl 0999.74046

Summary: We consider a chemically induced deformation of porous material taking place during advective-dispersive transport of a chemical. Linearized governing equations are derived, and analytical solutions of one-dimensional problems for a homogeneous layer with drained boundaries are obtained. Finally, we give numerical results for a particular clay material and for chemical migrating through the layer. The results allow to study distributions of concentration of chemical, changes in porosity of material and pore fluid pressure, and evolution of settlement of the layer as functions of time.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74E40 Chemical structure in solid mechanics
76S05 Flows in porous media; filtration; seepage
76V05 Reaction effects in flows
74L10 Soil and rock mechanics
Full Text: DOI

References:

[1] Fundamentals of poroelasticity. In Comprehensive Rock Engineering: Principles, Practice and Projects, (ed.). Pergamon Press: Oxford, 1993.
[2] Sherwood, Proceedings of the Royal Society of London A 440 pp 365– (1993) · Zbl 0786.73064 · doi:10.1098/rspa.1993.0021
[3] Greenberg, Journal of Geophysical Research 78 pp 6341– (1973) · doi:10.1029/JC078i027p06341
[4] Barbour, Canadian Geotechnical Journal 26 pp 551– (1989) · doi:10.1139/t89-068
[5] Dormieux, European Journal of Mechanics A 14 pp 981– (1995)
[6] Murad, International Journal of Engineering Science 34 pp 313– (1996) · Zbl 0900.76622 · doi:10.1016/0020-7225(95)00057-7
[7] Einstein, Rock Mechanics and Rock Engineering 29 pp 113– (1996) · doi:10.1007/BF01032649
[8] Kaczmarek, Transport in Porous Media 32 pp 49– (1998) · doi:10.1023/A:1006530405361
[9] Eisenberg, Journal of Biomechanical Engineering 109 pp 79– (1987) · doi:10.1115/1.3138647
[10] Lai, Journal of Biomedical Engineering 113 pp 245– (1991)
[11] Myers, Bulletin of Mathematical Biology 57 pp 77– (1995) · Zbl 0814.92003 · doi:10.1007/BF02458317
[12] Theoretical Soil Mechanics. Chapman & Hall: London, 1943. · doi:10.1002/9780470172766
[13] Biot, Journal of Applied Physics 12 pp 155– (1941) · JFM 67.0837.01 · doi:10.1063/1.1712886
[14] Eringen, International Journal of Engineering Science 32 pp 1337– (1994) · Zbl 0899.73017 · doi:10.1016/0020-7225(94)90042-6
[15] Heidug, International Journal for Numerical and Analytical Methods in Geomechanics 20 pp 403– (1996) · Zbl 0869.73062 · doi:10.1002/(SICI)1096-9853(199606)20:6<403::AID-NAG832>3.0.CO;2-7
[16] Hueckel, International Journal for Numerical and Analytical Methods in Geomechanics 21 pp 43– (1997) · Zbl 0894.73126 · doi:10.1002/(SICI)1096-9853(199701)21:1<43::AID-NAG858>3.0.CO;2-1
[17] Frijns, International Journal of Engineering Science 35 pp 1419– (1997) · Zbl 0916.73037 · doi:10.1016/S0020-7225(97)00047-5
[18] Hassanizadeh, Advances in Water Resources 9 pp 196– (1986) · doi:10.1016/0309-1708(86)90024-2
[19] Kaczmarek, Journal of Enginering Mechanics 124 pp 237– (1998) · doi:10.1061/(ASCE)0733-9399(1998)124:2(237)
[20] Xu, Cement and Concrete Research 24 pp 375– (1994) · doi:10.1016/0008-8846(94)90066-3
[21] Al-Niami, Water Resources Research 15 pp 1044– (1979) · doi:10.1029/WR015i005p01044
[22] Fernandez, Canadian Geotechnical Journal 25 pp 582– (1988) · doi:10.1139/t88-063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.