×

Steiner systems and configurations of points. (English) Zbl 1486.51005

Combinatorial design theory is a field of combinatorics connected to several other areas of mathematics including number theory and finite geometries. Steiner systems are important contents in design theory. Usually, the geometric study of Steiner systems focus on their automorphism groups. In this paper, the authors study special configurations of reduced points in \(\mathbb{P}^n\) constructed on Steiner systems, combining combinatorial algebraic geometry and commutative algebra.
Given any Steiner system \(S(t, n, v)\), the authors associate two ideals, in a suitable polynomial ring, defining a Steiner configuration of points in \(\mathbb{P}^n\) and its complement. They focus on the complement of a Steiner configuration of points because it is a proper hyperplanes section of a monomial ideal that is the Stanley-Reisner ideal of a matroid. They study homological invariants of the complement of a Steiner configuration of points, such as Hilbert function and Betti numbers. They also study symbolic and regular powers associated to the ideal defining a complement of a Steiner configuration of points, finding its Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence. However, the monomial ideal associated to a Steiner configuration of points does not lead to a Cohen-Macaulay algebra and they cannot apply the same methods as for its complement. In addition, they also compute the parameters of linear codes associated to any Steiner configuration of points and its complement.

MSC:

51E10 Steiner systems in finite geometry
51E22 Linear codes and caps in Galois spaces
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
14G50 Applications to coding theory and cryptography of arithmetic geometry
94B27 Geometric methods (including applications of algebraic geometry) applied to coding theory
94B05 Linear codes (general theory)

Software:

Macaulay2; CoCoA

References:

[1] Abbott J., Bigatti A.M., Robbiano L.: CoCoA: a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it
[2] Bocci, C.; Cooper, SM; Guardo, E.; Harbourne, B.; Janssen, M.; Nagel, U.; Seceleanu, A.; Van Tuyl, A.; Vu, T., The Waldschmidt constant for squarefree monomial ideals, J. Algebr. Comb.., 44, 4, 875-904 (2016) · Zbl 1352.13012
[3] Bocci, C.; Harbourne, B., The resurgence of ideals of points and the containment problem, Proc. Am. Math. Soc., 138, 4, 1175-1190 (2010) · Zbl 1200.14018
[4] Bruns W., Herzog J.: Cohen-Macaulay Rings, vol. 39. Cambridge Studies in Advanced Mathematics, Revised Edition (1998). · Zbl 0909.13005
[5] Buratti, M.; Gionfriddo, G.; Milazzo, L.; Voloshin, V., Lower and upper chromatic numbers for \(BSTS(2^h-1)s\), Comput. Sci. J. Moldova, 9, 2, 259-272 (2001) · Zbl 0987.05050
[6] Buratti M., Rinaldi G., Traetta T.: 3-pyramidal Steiner triple systems. Ars Math. Contemp. vol 13, No. 1 (2017). · Zbl 1382.05009
[7] Carlini, E.; Catalisano, MV; Guardo, E.; Van Tuyl, A., Hadamard star configurations, Rocky Mount. J. Math, 49, 2, 419-432 (2001) · Zbl 1423.14297
[8] Carlini, E.; Guardo, E.; Van Tuyl, A., Star configurations on generic hypersurfaces, J. Algebra, 407, 1-20 (2014) · Zbl 1303.14062
[9] Catalisano, MV; Guardo, E.; Shin, YS, The Waldschmidt constant of special \(k\)-configurations in \({\mathbb{P}}^n\), J. Pure Appl. Algebra. (2020) · Zbl 1439.13006 · doi:10.1016/j.jpaa.2020.106341
[10] Chudnovsky G.V.: Singular points on complex hypersurfaces and multidimensional Schwarz Lemma. In: M-J Bertin (ed.) Seminaire de Theorie des Nombres, Paris 1979-80, Seminaire Delange-Pisot-Poitou, Progress in Math vol. 12. Birkhauser, Boston (1981). · Zbl 0455.32004
[11] Colbourn, CJ; Dinitz, JH, CRC Handbook of Combinatorial Designs (2010), Boca Raton: CRC Press, Boca Raton · Zbl 0836.00010
[12] Colbourn, CJ; Pulleyblank, WR, Matroid Steiner problems, the Tutte polynomial and network reliability, J. Comb. Theory Ser. B, 47, 1, 20-31 (1989) · Zbl 0618.05017
[13] Colbourn, CJ; Rosa, A., Triple Systems (1999), Oxford: Oxford University Press, Oxford · Zbl 0938.05009
[14] Cooper, SM; Embree, RJ; Há, HT; Hoefel, AH, Symbolic powers of monomial ideals, Proc. Edinb Math. Soc., 60, 1, 39-55 (2017) · Zbl 1376.13010
[15] Cooper, SM; Guardo, E., Fat points, partial intersections and Hamming distance, J. Algebra Appl., 19, 4, 2050071 (2020) · Zbl 1444.13025 · doi:10.1142/S0219498820500711
[16] Cooper, SM; Seceleanu, A.; Tohaneanu, S.; Vaz, Pinto M.; Villarreal, RH, GMD functions for scheme based linear codes and algebraic invariants of Geramita ideals, Adv. Appl. Math., 112, 101940 (2020) · Zbl 1428.13048
[17] Czapliśki, A.; Glówka, A.; Malara, G.; Lampa-Baczyńska, M.; Luszcz-Swidecka, P.; Pokora, P.; Szpond, J., A counterexample to the containment \(I^{ (3)}\subseteq I^2\) over the reals, Adv. Geom., 16, 1, 77-82 (2016) · Zbl 1333.13005
[18] Dao H., De Stefani A., Grifo E., Huneke C., Núñez- Betancourt L.: Symbolic powers of ideals. In: Singularities and Foliations. Geometry, Topology and Applications, pp. 387-432. Springer, Cham (2015). · Zbl 1404.13023
[19] De Boer M., Pellikaan R.: Groebner bases for codes. Some Tapas of Computer Algebra. Chap. 10, pp. 237-259. Springer, Berlin (1999). · Zbl 1005.94020
[20] Eisenbud, D., Commutative Algebra: With a View Toward Algebraic Geometry (1995), New York: Springer-Verlag, New York · Zbl 0819.13001
[21] Favacchio, G.; Guardo, E.; Migliore, J., On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces, Proc. Am. Math. Soc., 146, 2811-2825 (2018) · Zbl 1388.13032 · doi:10.1090/proc/13981
[22] Favacchio, G.; Guardo, E.; Picone, B., Special arrangements of lines: codimension two ACM varieties in \({\mathbb{P}}^1\times{\mathbb{P}}^1\times{\mathbb{P}}^1\), J. Algebra Appl., 18, 4, 1 (2019) · Zbl 1411.13010
[23] Favacchio, G.; Migliore, J., Multiprojective spaces and the arithmetically Cohen-Macaulay property, Math. Proc. Cambr. Philos. Soc., 166, 3, 583-597 (2019) · Zbl 1452.13012
[24] Garrousian, M.; Tohaneanu, SO, Minimal distance of linear codes and \(\alpha \)-invariants, Adv. Appl. Math., 71, 190-207 (2015) · Zbl 1381.94116
[25] Geramita, A.; Harbourne, B.; Migliore, J., Star configurations in \({\mathbb{P}}^n\), J. Algebra, 376, 279-299 (2013) · Zbl 1284.14073
[26] Geramita, A.; Harbourne, B.; Migliore, J.; Nagel, U., Matroid configurations and symbolic powers of their ideals, Trans. Am. Math. Soc., 369, 10, 7049-66 (2017) · Zbl 1391.14109
[27] Gionfriddo, L., A conjecture of Berge about linear hypergraphs and Steiner systems \(S(2, 4, v)\), Discret. Math., 255, 125-133 (2002) · Zbl 1010.05010
[28] Gionfriddo, M.; Milazzo, L.; Rosa, A.; Voloshin, V., Bicoloring Steiner systems \(S(2, 4, v)\), Discret. Math., 283, 249-253 (2004) · Zbl 1044.05018
[29] Gionfriddo, M.; Guardo, E.; Milazzo, L., Extending bicolorings for Steiner triple systems, Appl. Anal. Discret. Math., 7, 2, 225-234 (2013) · Zbl 1408.05096
[30] Gionfriddo, M.; Guardo, E.; Milazzo, L.; Voloshin, V., Feasible sets of smalle bicolorable STSs, Austr. J. Math, 59, 1, 107-119 (2014) · Zbl 1296.05025
[31] Gold, L.; Little, J.; Schenck, H., Cayley-Bacharach and evaluation codes on complete intersections, J. Pure Appl. Algebra, 196, 91-99 (2005) · Zbl 1070.14027
[32] Grayson D.R., Stillman M.E.: Macaulay 2, a software system for research in algebraic geometry
[33] Guardo, E.; Harbourne, B.; Van Tuyl, A., Asymptotic resurgences for ideals of positive dimensional subschemes of projective space, Adv. Math., 246, 114-127 (2013) · Zbl 1296.13017 · doi:10.1016/j.aim.2013.05.027
[34] Hansen, J., Linkage and codes on complete intersections, Appl. Algebra Eng. Commun. Comput., 14, 3, 175-185 (2003) · Zbl 1039.94014
[35] Herzog, J.; Hibi, T., Monomial Ideals (2011), London: Springer, London · Zbl 1206.13001
[36] Lampa-Baczyńska, M.; Malara, G., On the containment hierarchy for simplicial ideals, J. Pure Appl. Algebra., 219, 12, 402-412 (2015) · Zbl 1328.13030
[37] Lindner, CC; Rosa, A., Steiner quadruple systems—a survey, Discret. Math., 21, 147-181 (1978) · Zbl 0398.05015
[38] Martinez-Bernal, J.; Pitones, Y.; Villarreal, RH, Minimum distance functions of complete intersections, J. Algebra Appl. (2017) · Zbl 1404.13034 · doi:10.1142/S0219498818502043
[39] Migliore, J.; Nagel, U.; Zanello, F.; Peeva, I., Pure \(O\)-sequences: known results, applications, and open problems, Commut. Algebra (2013), New York: Springer, New York · Zbl 1273.13040
[40] Milazzo, L.; Tuza, Z., Upper chromatic number of Steiner triple systems and quadruple systems, Discrete Math., 174, 247-259 (1997) · Zbl 0901.05012
[41] Milazzo, L., Strict colourings for classes of Steiner triple systems, Discret. Math., 182, 233-243 (1998) · Zbl 0901.05013
[42] Milazzo, L.; Tuza, Zs, Logarithmic upper bound for the upper chromatic number of \(S(t, t+1, v)\) systems, ARS Comb., 92, 213-223 (2009) · Zbl 1224.05183
[43] Milazzo, L.; Tuza, Zs; Voloshin, V., Strict colorings of Steiner triple and quadruple systems: a survey, Discret. Math., 261, 399-411 (2003) · Zbl 1008.05025
[44] Milici S.: Colouring Steiner triple systems. Rendiconti del Seminario Matematico di Messina Serie II Tomo XXV Supplemento al n.8, 113-118 (2002). · Zbl 1043.05022
[45] Milici, S.; Rosa, A.; Voloshin, V., Steiner systems with specified block colour patterns, Discret. Math., 240, 145-160 (2001) · Zbl 0983.05015
[46] Minh, NC; Trung, NV, Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals, Adv. Math., 226, 2, 1285-306 (2011) · Zbl 1204.13015
[47] Reid C., Rosa A.: Steiner systems S(2, 4,v)—a survey. · Zbl 1277.05019
[48] Smith, GG; Sturmfels, B., Combinatorial Algebraic Geometry: Selected Papers From 2016 Apprenticeship Program (2017), Berlin: Springer, Berlin · Zbl 1387.14014
[49] Swartz, E., Topological representations of matroids, J. Am. Math. Soc., 16, 2, 427-42 (2003) · Zbl 1007.05040
[50] Szemberg, T.; Szpond, J., On the containment problem, Rend. Circolo Mat. Palermo. Ser., 66, 2, 233-45 (2017) · Zbl 1386.14045
[51] Terai, N.; Trung, NV, Cohen-Macaulayness of large powers of Stanley-Reisner ideals, Adv. Math., 229, 2, 711-30 (2012) · Zbl 1246.13032
[52] Tohaneanu, SO, The minimum distance of sets of points and the minimum socle degree, J. Pure Appl. Algebra., 215, 11, 2645-51 (2011) · Zbl 1238.13021
[53] Tohaneanu S.O.: Lower bounds on minimal distance of evaluation codes. Appl. Algebra Eng. Commun. Comput. 20(5-6), 351 (2009). · Zbl 1184.94278
[54] Tohaneanu, SO; Van Tuyl, A., Bounding invariants of fat points using a coding theory construction, J. Pure Appl. Algebra., 217, 2, 269-79 (2013) · Zbl 1274.13029
[55] Tohaneanu S.O., Xie Y.: Homological properties of ideals genertaed by \(\alpha \)-product of linear forms. (2019). https://128.84.21.199/pdf/1906.08346v3.pdf
[56] van Lint, J.; van der Geer, G., Introduction to Coding Theory and Algebraic Geometry (2012), Basel: Birkhäuser, Basel
[57] Van Maldeghem, H., Some remarks on Steiner systems, Desig. Codes Cryptogr., 29, 199-213 (2003) · Zbl 1030.51003
[58] Varbaro, M., Symbolic powers and matroids, Proc. Am. Math. Soc., 139, 7, 2357-66 (2011) · Zbl 1223.13012
[59] Waldschmidt M.: Propriétés arithmétiques de fonctions de plusieurs variables II. Séminaire P. Lelong (Analyse), 1975/76, pp. 108-135. Lecture Notes Math., vol. 578. Springer, Heidelberg (1977) · Zbl 0363.32003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.