×

Simulating urban expansion by coupling a stochastic cellular automata model and socioeconomic indicators. (English) Zbl 1418.91418

Summary: Urbanization is one of the most important anthropogenic activities that create extensive environmental implications at both local and global scales. Dynamic urban expansion models are useful tools to understand the urbanization process, project its spatiotemporal dynamics and provide useful information for assessing the environmental implications of urbanization. A hybrid urban expansion model (NNSCA model) was proposed to simulate rapid urban growth in a typical industrial city, Dongying, China, by coupling a artificial-neural-network-based stochastic cellular automata model and several socioeconomic indictors, i.e., the per capita income of the rural population, the per capita income of the urban population, population and gross domestic products of the city. Good conformity between simulated and actual urban patterns suggested that the NNSCA model was able to effectively simulate historic urban growth and to generate realistic urban patterns. A series of scenario analyses suggested that the expanding urban would threaten the ecosystem health of coastal wetlands in the city unless environmental protection actions are taken in the future. The NNSCA model provides abilities to assess future urban growth under various planning and management scenarios, and can be integrated into ecological or environmental process models to evaluate urbanization’s environmental implications.

MSC:

91D10 Models of societies, social and urban evolution
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Alberti M (2005) The effects of urban patterns on ecosystem function. Int Reg Sci Rev 28:168-192 · doi:10.1177/0160017605275160
[2] Arend L, Bregt AK, Van Lammeren R (2001) Multi-actor based land use modeling: spatial planning using agents. Landsc Urban Plan 56:21-33 · doi:10.1016/S0169-2046(01)00162-1
[3] Barredo J, Kasanko M, McCormick M, Lavalle C (2003) Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landsc Urban Plan 64:145-160 · doi:10.1016/S0169-2046(02)00218-9
[4] Batty M, Xie Y, Sun Z (1999) Modeling urban dynamics through GIS-based cellular automata. Comput Environ Urban Syst 23:205-233 · doi:10.1016/S0198-9715(99)00015-0
[5] Berling-Wolff S, Wu J (2004) Modeling urban landscape dynamics: a case study in Phoenix, USA. Urban Ecosyst 7:215-240 · doi:10.1023/B:UECO.0000044037.23965.45
[6] Chetouani Y (2008) A neural network approach for the real-time detection of faults. Stoch Environ Res Risk Assess 22(3):339-349 · Zbl 1365.92008 · doi:10.1007/s00477-007-0123-4
[7] Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plan B 24:247-261 · doi:10.1068/b240247
[8] Guttikunda SK, Carmichael GR, Calori G, Eck C, Woo JH (2003) The contribution of megacities to regional sulfur pollution in Asia. Atmos Environ 37:11-22 · doi:10.1016/S1352-2310(02)00821-X
[9] Hagen A (2003) Fuzzy set approach to assessing similarity of categorical maps. Int J Geogr Inf Sci 17:235-249 · doi:10.1080/13658810210157822
[10] Haub C (2007) 2007 World population data sheet. Population Reference Bureau, Washington. http://www.prb.org/pdf07/07WPDS_Eng.pdf
[11] He C, Okada N, Zhang Q, Shi P, Zhang J (2006) Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Appl Geogr 26:323-345 · doi:10.1016/j.apgeog.2006.09.006
[12] Herold M, Goldstein CN, Clarke CK (2003) The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sens Environ 86:286-302 · doi:10.1016/S0034-4257(03)00075-0
[13] Huang QH, Cai YL (2007) Simulation of land use change using GIS-based stochastic model: the case study of Shiqian County, Southwestern China. Stoch Environ Res Risk Assess 21:419-426 · doi:10.1007/s00477-006-0074-1
[14] Khoo KL, Tan H, Liew YM, Deslypere JP, Janus E (2003) Lipids and coronary heart disease in Asia. Atherosclerosis 169:1-10 · doi:10.1016/S0021-9150(03)00009-1
[15] Li X, Yeh AGO (2002) Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci 16:323-343 · doi:10.1080/13658810210137004
[16] Li X, Yang QS, Liu XP (2008) Discovering and evaluating urban signatures for simulating compact development using cellular automata. Landsc Urban Plan 86:177-186 · doi:10.1016/j.landurbplan.2008.02.005
[17] Liu JY, Zhan JY, Deng XZ (2005) Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. AMBIO 34:450-455
[18] Liu XP, Li X, Shi X, Wu SK, Liu T (2008) Simulating complex urban development using kernel-based non-linear cellular automata. Ecol Model 211:169-181 · doi:10.1016/j.ecolmodel.2007.08.024
[19] López E, Bocco G, Mendoza M, Duhau E (2001) Predicting land-cover and land-use change in the urban fringe: a case in Morelia city, Mexico. Landsc Urban Plan 55:271-285 · doi:10.1016/S0169-2046(01)00160-8
[20] Ottensmann JR (1977) Urban sprawl, land values and the density of development. Land Econ 53:389-400 · doi:10.2307/3145984
[21] Pickett STA, Cadenasso ML, Grove JM, Nilon CH, Pouyat RV, Zipperer WC, Costanza R (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annl Rev Ecol Syst 32:127-157 · doi:10.1146/annurev.ecolsys.32.081501.114012
[22] Pielke RA (2005) Land use and climate change. Science 310:1625-1626 · doi:10.1126/science.1120529
[23] Pijanowski BC, Pithadia S, Shellito BA, Alexandridis K (2005) Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int J Geogr Inf Sci 19(2):197-215 · doi:10.1080/13658810410001713416
[24] Pontius RG Jr, Huffaker D, Denman K (2004) Useful techniques of validation for spatially explicit land-change models. Ecol Model 179:445-461 · doi:10.1016/j.ecolmodel.2004.05.010
[25] Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770-1774 · doi:10.1126/science.287.5459.1770
[26] SBD (Statistic Bureau of Dongying) (2006) Dongying statistic year book 2006. China Statistic, Beijing
[27] Scardi M (2001) Advances in neural network modelling of phytoplankton primary production. Ecol Model 146:33-45 · doi:10.1016/S0304-3800(01)00294-0
[28] Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154:217-235 · doi:10.1016/S0304-3800(02)00059-5
[29] Syphard AD, Clarke KC, Franklin J (2005) Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California. Ecol Complex 2:185-203 · doi:10.1016/j.ecocom.2004.11.003
[30] Tan MH, Li XB, Lu CH (2005) Urban land expansion and arable land loss of the major cities in China in the 1990s. Sci China Ser D Earth Sci 48:1492-1500 · doi:10.1360/03yd0374
[31] United Nations (2004) World urbanization prospects, 2004 revision. New York. http://www.un.org/esa/population/pubsarchive/pubsarchive.htm
[32] Van Metre PC, Mahler BJ (2005) Trends in hydrophobic organic contaminants in urban and Reference Lake sediments across the United States, 1970-2001. Environ Sci Technol 39:5567-5574 · doi:10.1021/es0503175
[33] Verburg PH, Veldkamp A, Fresco LO (1999) Simulation of changes in the spatial pattern of land use in China. Appl Geogr 19:211-233 · doi:10.1016/S0143-6228(99)00003-X
[34] Ward D, Murray A, Phinn S (2000) A stochastically constrained cellular model of urban growth. Comput Environ Urban Syst 24:539-558 · doi:10.1016/S0198-9715(00)00008-9
[35] White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns. Environ Plan A 25:1175-1199 · doi:10.1068/a251175
[36] Wu Q, Li HQ, Wang RS, Paulussen J, He Y, Wang M, Wang BH, Wang Z (2006) Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc Urban Plan 78:322-333 · doi:10.1016/j.landurbplan.2005.10.002
[37] Xu C, Liu MC, Zhang C, An SQ, Yu W, Chen JM (2007) The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landsc Ecol 22:925-937 · doi:10.1007/s10980-007-9079-5
[38] Yeh AGO, Li X (1999) Economic development and agricultural land loss in the Pearl River Delta, China. Habitat Int 23:373-390 · doi:10.1016/S0197-3975(99)00013-2
[39] Zhang WJ, Liu GH, Dai HQ (2008) Simulation of food intake dynamics of holometabolous insect using functional link artificial neural network. Stoch Environ Res Risk Assess 22(1):123-133 · Zbl 1172.92041 · doi:10.1007/s00477-006-0102-1
[40] Zhou LM, Dickinson RE, Tian YH, Fang JY, Li QX, Kaufman RK, Tucker CJ, Myneni RB (2004) Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci USA 101:9540-9544 · doi:10.1073/pnas.0400357101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.