×

A survey on traffic optimization problem using biologically inspired techniques. (English) Zbl 1530.68287

MSC:

68W50 Evolutionary algorithms, genetic algorithms (computational aspects)
90B20 Traffic problems in operations research
90C59 Approximation methods and heuristics in mathematical programming

Software:

Krill herd; ABC
Full Text: DOI

References:

[1] Abdulaal, M.; LeBlanc, L., Continuous equilibrium network design models, Transp Res Part B, 13, 19-32 (1979)
[2] Allsop, RE; Charlesworth, JA, Traffic in a signal-controlled road network: an example of different signal timings including different routings, Traffic Eng Control, 18, 5, 262-264 (1977)
[3] Alves D, Jelmer V, Zhe C, De Schutter B, Babushka R (2010) Ant colony optimization for traffic dispersion routing. In: 13th international IEEE, annual conference on intelligent transportation systems 2013, pp 683-688
[4] Babazadeh, A.; Poorzahedy, H.; Nikoosokhan, S., ‘Application of particle swarm optimization to transportation network design problem, J King Saud Univ—Sci, 23, 293-300 (2011)
[5] Barra1 A, Carvalho L, Teypaz N, Cung VD, Balassiano R (2007) Solving the transit network design problem with constraint programming. In: 11th world conference in transport research-WCTR. University of California, Berkeley, USA
[6] Baskan, O., An evaluation of heuristic methods for determining optimal link capacity expansions on road network, Int J Transp, 2, 77-94 (2014)
[7] Baskan, O., ‘Harmony search algorithm for continuous network design problem with link capacity expansions, KSCE J Civ Eng, 18, 1, 273-283 (2014) · doi:10.1007/s12205-013-0122-6
[8] Baskan, O.; Ceylan, H., Modified differential evaluation algorithm for the continuous network design problem, Procedia—Soc Behav Sci, 111, 48-57 (2014)
[9] Baskan O, Dell’Orco M (2012) Artificial bee colony algorithm for continuous network design problem with link capacity expansions. In: 10th international congress on advances in civil engineering, Middle East Technical University, Ankara, Turkey, pp17-19
[10] Baskan O, Haldenbilen S (2011) Ant colony optimization approach for optimizing traffic signal timings. In: Ant colony optimization-methods and application, InTech, pp 205-220, ISBN 978-953-307-157-2
[11] Baskan, O.; Haldenbilen, S.; Ceylan, H.; Ceylan, H., A new solution algorithm for improving performance of ant colony optimization, Appl Math Comput, 211, 1, 75-84 (2009) · Zbl 1162.90590 · doi:10.1016/j.amc.2009.01.025
[12] Bedi P et al. (2007) Avoiding traffic jam using ant colony optimization—a novel approach. In: International conference on computational intelligence and multimedia applications, 2007, vol 1, pp 61-67, ISBN:0-7695-3050-8
[13] Bhattacharjee, K.; Naskar, N.; Roy, S.; Das, S., A survey of cellular automata: types, dynamics, non-uniformity and applications’ natural computing (2018), Netherlands: Springer, Netherlands
[14] Cantarella, GE; Pavone, G.; Vitetta, A., Heuristics for urban road network design: lane layout and signal settings, Eur J Oper Res, 175, 3, 1682-1695 (2006) · Zbl 1142.90345
[15] Ceylan, H., Developing combined genetic algorithm-hill-climbing optimization method for area traffic control, J Trans Eng, 132, 8, 663-671 (2006)
[16] Ceylan, H., Optimal design of signal controlled road networks using differential evaluation optimization algorithm, Math Probl Eng, 2013, 1-11 (2013) · Zbl 1299.90077
[17] Ceylan, H.; Bell, MGH, Traffic signal timing optimisation based on genetic algorithm approach, including drivers’ routing, Trans Res Part B, 38, 4, 329-342 (2004)
[18] Ceylan, H.; Ceylan, H., A hybrid harmony search and TRANSYT hill climbing algorithm for signalized stochastic equilibrium transportation networks, Transp Res Part C, 25, 152-167 (2012)
[19] Chen, S.; Chen, R.; Gao, J., ‘A monarch butterfly optimization for the dynamic vehicle routing problem, Algorithms, 10, 3, 107 (2017) · Zbl 1461.90011
[20] Creel ND, Maker MJ, Paechter B (1998) ‘The continuous equilibrium optimal network design problem: a genetic approach’ transportation network: recent methodological advances. In: Proceedings of the 4th Euro Transportation Meeting, ISBN:0 08 043052 X
[21] Daganzo, CF; Sheffi, Y., On stochastic models of traffic assignment, Transp Sci, 11, 3, 253-274 (1977)
[22] Dantzig, GB; Harvey, RP; Lansdowne, ZF; Robinson, DW; Maier, SF, Formulating and solving the network design problem by decomposition, Transp Res Part B, 13, 1, 5-17 (1979)
[23] Dell’Orco M, Baskan Ö, Marinel M (2014) ‘Artificial bee colony-based algorithm for optimising traffic signal timings. Adv Intell Syst Comput, pp 327-337. 10.1007/978-3-319-00930-8_29
[24] Dimitriou L, Tsekeris T, Stathopoulos A (2008) ‘Genetic computation of road network design and pricing Stackelberg games with multi-class users. Applications of evolutionary computing of the series. Lecture Notes in Computer Science, vol 4974, pp 669-678
[25] Dinu, S.; Bordea, G., A new genetic approach for transport network design and optimization, Bull Pol Acad Sci Tech Sci, 59, 3, 263-272 (2011) · Zbl 1291.90033 · doi:10.2478/v10175-011-0032-z
[26] Divsalar, M.; Hassanzadeh, R.; Mahdavi, I.; Shirazi, B., A stochastic user equilibrium assignment problem in discrete network design problem, Int J Oper Res, 26, 4, 422-442 (2016) · Zbl 1362.90299
[27] Dorigo M (1992) Optimization, learning and natural algorithms’, Ph.D. Thesis, Politecnico DI Milano, Italy
[28] Dorigo M, Stutzle T (2004) ‘Ant colony optimization-a bradford book’. The MIT Press, Cambridge, ISBN 0-262-04219-3 · Zbl 1092.90066
[29] Dorigo, M.; Maniezzo, V.; Colorni, A., The ant system: optimization by a colony of cooperating agents, IEEE Trans Syst Man Cybern- Part B, 26, 1, 1-13 (1996)
[30] Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on, vol. 4, ISBN: 0-7803-2768-3
[31] Elbeltagia, E.; Hegazyb, T.; Griersonb, D., Comparison among five evolutionary -based optimization algorithms, Adv Eng Inform, 19, 2005, 43-53 (2004)
[32] Farahani, RZ; Miandoabchi, E.; Szeto, WY; Rashidi, H., A review of urban transportation network design problems, Eur J Oper Res, 229, 2, 281-302 (2013) · Zbl 1317.90047
[33] Feng, Y.; Wang, G-G; Deb, S.; Mei, L.; Zhao, X-J, Solving 0-1 knapsack problem by a novel binary monarch butterfly optimization, Neural Comput Appl, 28, 7, 1619-1634 (2017)
[34] Fisk, CS, On combining maximum entropy trip matrix estimation with user assignment, Transp Res, 22B, 69-73 (1988)
[35] Friesz, TL, Transportation network equilibrium, design and aggregation: key developments and research opportunities, Transp Res Part A, 19, 5-6, 413-427 (1985)
[36] Friesz, TL; Cho, HJ; Mehta, NJ; Tobin, RL; Anandalingam, G., A simulated annealing approach to the network design problem with variational inequality constraints, Transp Sci, 26, 1, 18-26 (1992) · Zbl 0764.90084
[37] Garcia Nieto, J.; Alba, E.; Olivera, AC, Swarm intelligence for traffic light scheduling: application to real urban area, Eng Appl Artif Intell, 25, 274-283 (2010)
[38] Goldberg DE (2006) Genetic algorithms. Pearson Education India, Delhi, ISBN 817758829X, 9788177588293
[39] Hirulkar, P.; Deshpande, R.; Bajaj, P., Optimization of traffic flow through signalized intersections using PSO, Int J Comput Sci Appl, 3, 434-437 (2013)
[40] Hu, H., A particle swarm optimization algorithm for bi-level programming models in urban traffic equilibrium network design, ICCTP, 2009, 1-7 (2009)
[41] Hu, W.; Wang, H.; Yan, L.; B, Du, A swarm intelligent method for traffic light scheduling: application to real urban traffic networks, Appl Intell, 44, 208-231 (2016) · doi:10.1007/s10489-015-0701-y
[42] Jintamuttha K, Watanapa B, Charoenkitkarn N (2016) ‘Dynamic traffic light timing optimization model using bat algorithm. In: 2nd international conference on control science and systems engineering, pp 181-185
[43] Kanoh H, Hara K (2008) Hybrid genetic algorithm for dynamic multi-objective route planning with predicted traffic in a real-world road network’. In: GECCO’08, Atlanta, Georgia, USA, pp 657-664
[44] Karaboga, D.; Basturk, B., On the performance of artificial bee colony (ABC) algorithm, Appl Soft Comput, 8, 687-697 (2008)
[45] Koh A (2007) Solving transportation Bi-level problem with differential evaluation. In: IEEE congress on evolutionary computing, pp 2243-2250, ISBN-978-1-4244-1340-9
[46] Koza, JR, Genetic programming- on the programming of computers by means of natural selection (1992), Cambridge: MIT Press Edition, Cambridge · Zbl 0850.68161
[47] LeBlanc, LJ, An algorithm for the discrete network design problem, Transp Sci, 9, 183-199 (1975)
[48] Liangzhi Z, Minai H (2010) Study on road network Bi-level programming under the traffic flow guidance. In: International conference on measuring technology and mechatronics automation. pp 631-634. 10.1109/icmtma.2010.362
[49] Liangzhi Z, Lutao B, Liangzhi Z (2010) Model for road network equilibrium Bi-level programming based on rough genetic algorithm. Adv Comput Control (ICACC), pp 83-85, ISSN978-1-4244-5848-6/10
[50] Liu Q, Xu J (2012) ‘Traffic signal timing optimization for isolated intersections based on differential evaluation bacteria foraging algorithm’. In: Proceeding—social and behavioural sciences, 8th international conference on traffic and transportation studies, vol 43, pp 210-215
[51] Magnanti, TL; Wong, RT, Network design and transportation planning: models and algorithms, Transp Sci, 18, 1, 1-55 (1984)
[52] Mathew, TV; Shrama, S., Capacity expansion problem for large urban transportation networks, J Transp Eng, 135, 7, 406-415 (2009)
[53] Miandoabchi, E.; Farahani, RZ, Optimizing reserve capacity of urban road networks in a discrete network design problem, Adv Eng Softw, 42, 12, 1041-1050 (2010) · Zbl 1239.90014
[54] Migdalas, A., Bilevel programming in traffic planning: models, methods and challenge, J Glob Optim, 7, 381-405 (1995) · Zbl 0844.90050
[55] Montana DJ, Czerwinski S (1996) Evolving control laws for a network of traffic signals. In: Proceedings of the 1st annual conference on genetic programming. pp 333-338, ISBN:0-262-61127-9
[56] Poorzahedy, H.; Abulghasemi, F., Application of ant system to network design problem, Transportation, 32, 3, 251-273 (2005) · doi:10.1007/s11116-004-8246-7
[57] Poorzahedy, H.; Abulghasemi, F., Application of ant system to network design problem, Transportation, 32, 251-273 (2005)
[58] Poorzahedy, H.; Rouhani, OM, Hybrid meta-heuristic algorithms for solving network design problem, Eur J Oper Res, 182, 2, 578-596 (2007) · Zbl 1121.90024
[59] Poorzahedy, H.; Rouhani, OM, Hybrid meta-heuristic algorithms for solving network design problems, Eur J Oper Res, 182, 578-596 (2007) · Zbl 1121.90024
[60] Sahana SK, Kumar K (2014) ‘Hybrid synchronous discrete distance time model for traffic signal optimization’, In: Series smart innovation, systems and technologies, book computational intelligence in data mining, Springer India, vol 31, pp 23-33. Print: ISBN- 978-81-322-2204-0, Online: ISBN- 978-81-322-2205-7, 10.1007/978-81-322-2205-7_3
[61] Shefi Y (1985) ‘Urban transportation network: equilibrium analysis with mathematical programming method. Traffic engineering control, Prentice-Hall, ISBN 0-13-93-9729
[62] Shen-Pei Z, Xin-Ping Y (2009) ‘The fusion algorithm of genetic and ant colony and its application. In: Fifth international conference on natural computation, pp 76-80, 978-0-7695-3736
[63] Simaan, M.; Cruz, JB Jr, On the Stackelberg strategy in nonzero-sum games, J Optim Theory Appl, 11, 533-555 (1973) · Zbl 0243.90056
[64] Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer, Berlin, ISBN10:354073189X, online ISBN 978-3-540-73190-0 · Zbl 1129.90001
[65] Srivastava, S.; Sahana, SK, ‘ACONN—a multicast routing implementation, Comput Intell Data Min, 2, 133-141 (2015)
[66] Srivastava, S.; Sahana, S., Nested hybrid evolutionary model for traffic signal optimization. Applied intelligence, 1-11 (2016), Berlin: Springer, Berlin
[67] Srivastava, Sweta; Sahana, Sudip; Pant, Durgesh; Mahanti, Prabhat, Hybrid synchronous discrete distance, time model for traffic signal optimization, J Next Gener Inf Technol, 6, 1-8 (2015)
[68] Storn and Price (1995) ‘Differential evaluation—a simple and efficient adaptive scheme for global optimization over continuous spaces’. J Glob Optim 23(1) · Zbl 0888.90135
[69] Sun, Z., Continuous transportation network design problem based on bilevel programming model, Procedia Eng, 137, 277-282 (2016)
[70] Suwansirikul, C.; Friesz, TL; Tobin, RL, Equilibrium decomposed optimisation: a heuristic for the continuous equilibrium network design problem, Transp Sci, 21, 4, 254-263 (1987) · Zbl 0638.90097
[71] Tianze, X.; Wei, H.; Wang, Z-D, Study on continuous network design problem using simulated annealing and genetic algorithm’, Expert Syst Appl, 36, 2735-2741 (2009)
[72] Ukkusuri, S.; Kien Doan, HM; Aziz, A., A Bi-level formulation for the combined dynamic equilibrium based traffic signal control, Procedia—Soc Behav Sci, 80, 729-752 (2013)
[73] Wang, G-G, Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems, Memet Comput, 10, 2, 151-164 (2016)
[74] Wang, G-G, ‘A new metaheuristic optimisation algorithm motivated by elephant herding behaviour, Int J Bio-Inspir Comput, 8, 394-409 (2016)
[75] Wang, J.; Deng, W., Optimizing capacity of signalized road network with reversible lanes, Transport, 33, 1, 1-11 (2018)
[76] Wang, G-G; Guo, L.; Wang, H.; Duan, H.; Liu, L.; Li, J., ‘Incorporating mutation scheme into krill herd algorithm for global numerical optimization, Neural Comput Appl, 24, 3-4, 853-871 (2012)
[77] Wang, G-G; Guo, L.; Gandomi, AH; Alavi, AH; Duan, H., Simulated annealing-based krill herd algorithm for global optimization, Hindawi Publ Corp Abstr Appl Anal, 2013, 1-11 (2013) · Zbl 1291.90330
[78] Wang, G-G; Gandomi, AH; Alavi, AH, An effective krill herd algorithm with migration operator in biogeography-based optimization, Appl Math Model, 38, 2454-2462 (2013) · Zbl 1427.90303
[79] Wang, G.; Guo, L.; Gandomi, AH; Cao, L.; Alavi, AH; Duan, H.; Li, J., ‘Lévy-flight krill herd algorithm, Math Probl Eng, 2013, 1-14 (2013)
[80] Wang, G-G; Gandomi, AH; Yang, X-S; Alavi, AH, A novel improved accelerated particle swarm optimization algorithm for global numerical optimization, Eng Comput Int J Comput-Aided Eng Softw, 31, 7, 1198-1220 (2014)
[81] Wang G-G, Deb S, Cui Z (2015) ‘Monarch butterfly optimization’ Neural Comput Appl, 1-20
[82] Wang, G-G; Gandomi, AH; Zhao, X.; Chu, HCE, ‘Hybridizing harmony search algorithm with cuckoo search for global numerical optimization, Soft Comput, 20, 1, 273-285 (2016)
[83] Wang, G-G; Gandomi, AH; Alavi, AH; Deb, S., A hybrid method based on krill herd and quantum-behaved particle swarm optimization, Neural Comput Appl, 27, 4, 989-1006 (2016)
[84] Wang, G-G; Gandomi, AH; Yang, X-S; Alavi, AH, A new hybrid method based on krill herd and cuckoo search for global optimisation tasks, Int J Bio-Inspir Comput, 8, 5, 286-299 (2016)
[85] Wang, G-G; Deb, S.; Zhao, X.; Cui, Z., ‘A new monarch butterfly optimization with an improved crossover operator, Oper Res, 18, 1-25 (2016)
[86] Wang, G-G; Deb, S.; dos Coelho, LS, Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems, Int J Bio-Inspir Comput, 12, 1, 1-22 (2018)
[87] Yu X, Gen M (2010) ‘Introduction to evolutionary algorithms’. Springer, London, ISBN 978-1-84996-128-8 · Zbl 1206.90001
[88] Xu, T.; Wei, H.; Hu, G., Study on continuous network design problem using simulated annealing and genetic algorithm, Expert Syst Appl, 36, 2-1, 1322-1328 (2009)
[89] Yang, XS; Gonzalez, JR, ‘A new metaheuristic bat-inspired algorithm, Nature inspired cooperative strategies for optimization’ (NISCO 2010), studies in computational intelligence, 65-74 (2010), Berlin: Springer, Berlin · Zbl 1197.90348
[90] Yang, XS; Gandomi, AH, Bat algorithm: a novel approach for global engineering optimization, Eng Comput, 29, 5, 464-483 (2012)
[91] Zhang, H.; Gao, Z., Two-way road network design problem with variable lanes, J Syst Sci Syst Eng, 16, 1, 50-61 (2007)
[92] Zhang, J.; Wang, G., Image matching using a bat algorithm with mutation, Appl Mech Mater, 203, 88-93 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.