×

Sharp \(L^p\)-entropy inequalities on manifolds. (English) Zbl 1323.58012

Summary: In 2003, M. Del Pino and J. Dolbeault [J. Funct. Anal. 197, No. 1, 151–161 (2003; Zbl 1091.35029)] and I. Gentil [J. Funct. Anal. 202, No. 2, 591–599 (2003; Zbl 1173.35424)] investigated, independently, best constants and extremals associated to Euclidean \(L^p\)-entropy inequalities for \(p>1\). In this work, we present some contributions in the Riemannian context. Namely, let \((M,g)\) be a compact Riemannian manifold of dimension \(n\geq 3\). For \(1<p\leq 2\), we establish the validity of the sharp Riemannian \(L^p\)-entropy inequality \[ \int\limits_M|u|^p\log(|u|^p)dv_g\leq\frac{n}{p}\log\biggl(\mathcal A_{\mathrm{opt}} \int\limits_M |\nabla_g u|^pdv_g+\mathcal B\biggr) \] on all functions \(u\in H^{1,p}(M)\) such that \(\| u\|_{L^p(M)}=1\) for some constant \(\mathcal B\). Moreover, we prove that the first best constant \(\mathcal A_{\mathrm{opt}}\) is equal to the corresponding Euclidean one. Our approach is inspired on the D. Bakry et al.’s idea [Indiana Univ. Math. J. 44, No. 4, 1032–1074 (1995; Zbl 0857.26006)] of getting Euclidean entropy inequalities as a limit case of suitable subcritical interpolation inequalities. It is conjectured that the inequality sometimes fails for \(p>2\).

MSC:

58J05 Elliptic equations on manifolds, general theory
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
41A44 Best constants in approximation theory
35J87 Unilateral problems for nonlinear elliptic equations and variational inequalities with nonlinear elliptic operators
26D10 Inequalities involving derivatives and differential and integral operators

References:

[1] Aubin, T., Some Nonlinear Problems in Riemannian Geometry, Springer Monogr. Math. (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0896.53003
[2] Bakry, D., L’hypercontractivité et son utilisation en théorie des semigroupes, (Lectures on Probability TheoryÉcole D’été de Probabilités de St-Flour 1992. Lectures on Probability TheoryÉcole D’été de Probabilités de St-Flour 1992, Lecture Notes in Mathematics, vol. 1581 (1994), Springer: Springer Berlin), 1-114 · Zbl 0856.47026
[3] Bakry, D.; Coulhon, T.; Ledoux, M.; Saloff-Coste, L., Sobolev inequalities in disguise, Indiana Univ. Math. J., 44, 4, 1033-1074 (1995) · Zbl 0857.26006
[4] Beckner, W., Geometric proof of Nash’s inequality, Int. Math. Res. Not. IMRN, 2, 67-71 (1998) · Zbl 0895.35015
[5] Beckner, W., Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math., 11, 1, 105-137 (1999) · Zbl 0917.58049
[6] Bobkov, S.; Gentil, I.; Ledoux, M., Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl., 80, 669-696 (2001) · Zbl 1038.35020
[7] Bobkov, S.; Gentil, I.; Ledoux, M., Hypercontractivity of Hamilton-Jacobi equations. Inhomogeneous random systems, Markov Process. Related Fields, 8, 233-235 (2002) · Zbl 1006.47500
[8] Brouttelande, C., The best-constant problem for a family of Gagliardo-Nirenberg inequalities on a compact Riemannian manifold, Proc. R. Soc. Edinb., 46, 147-157 (2003) · Zbl 1031.58009
[9] Brouttelande, C., On the second best constant in logarithmic Sobolev inequalities on complete Riemannian manifolds, Bull. Sci. Math., 127, 292-312 (2003) · Zbl 1036.58015
[10] Carlen, E. A., Superadditivity of Fisher’s information and logarithmic Sobolev inequalities, J. Funct. Anal., 101, 1, 194-211 (1991) · Zbl 0732.60020
[11] Ceccon, J., General optimal \(L^p\)-Nash inequalities on Riemannian manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (2015), in press
[12] Ceccon, J.; Montenegro, M., Optimal \(L^p\)-Riemannian Gagliardo-Nirenberg inequalities, Math. Z., 258, 851-873 (2008) · Zbl 1139.46031
[13] Ceccon, J.; Montenegro, M., Optimal Riemannian \(L^p\)-Gagliardo-Nirenberg inequalities revisited, J. Differential Equations, 254, 2532-2555 (2013) · Zbl 1273.53028
[14] Del Pino, M.; Dolbeault, J., The optimal Euclidean \(L^p\)-Sobolev logarithmic inequality, J. Funct. Anal., 197, 151-161 (2003) · Zbl 1091.35029
[15] Del Pino, M.; Dolbeault, J.; Gentil, I., Nonlinear diffusions, hypercontractivity and the optimal \(L^p\)-Euclidean logarithmic Sobolev inequality, J. Math. Anal. Appl., 293, 375-388 (2004) · Zbl 1058.35124
[16] Druet, O.; Hebey, E., The AB program in geometric analysis: sharp Sobolev inequalities and related problems, Mem. Amer. Math. Soc., 160, 761 (2002) · Zbl 1023.58009
[17] Druet, O.; Hebey, E.; Vaugon, M., Optimal Nash’s inequalities on Riemannian manifolds: the influence of geometry, Int. Math. Res. Not. IMRN, 14, 735-779 (1999) · Zbl 0959.58043
[18] Gentil, I., Ultracontractive bounds on Hamilton-Jacobi solutions, Bull. Sci. Math., 126, 507-524 (2002) · Zbl 1015.35019
[19] Gentil, I., The general optimal \(L^p\)-Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations, J. Funct. Anal., 202, 591-599 (2003) · Zbl 1173.35424
[20] Gross, L., Logarithmic Sobolev inequalities, Amer. J. Math., 97, 1061-1083 (1975) · Zbl 0318.46049
[21] Humbert, E., Best constant in the \(L^2\)-Nash inequality, Proc. Roy. Soc. Edinburgh Sect. A, 131, 621-646 (2001) · Zbl 1040.53048
[22] Ledoux, M., Isoperimetry and Gaussian analysis, (Lectures on Probability Theory and StatisticsÉcole D’été de Probabilités de St-Flour 1994. Lectures on Probability Theory and StatisticsÉcole D’été de Probabilités de St-Flour 1994, Lecture Notes in Mathematics, vol. 1648 (1996), Springer: Springer Berlin), 165-294 · Zbl 0874.60005
[23] Ledoux, M., Concentration of measure and logarithmic Sobolev inequalities, (Séminaire de Probabilités XXXIII. Séminaire de Probabilités XXXIII, Lecture Notes in Mathematics, vol. 1709 (1999), Springer), 120-216 · Zbl 0957.60016
[24] Nash, J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80, 931-954 (1958) · Zbl 0096.06902
[25] Perelman, G., The entropy formula for the Ricci flow and its geometric applications · Zbl 1130.53001
[26] Serrin, J., Local behavior of solutions of quasilinear equations, Acta Math., 111, 247-302 (1964) · Zbl 0128.09101
[27] Talagrand, M., Transportation cost for Gaussian and other product measures, Geom. Funct. Anal., 6, 587-600 (1996) · Zbl 0859.46030
[28] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51, 1, 126-150 (1984) · Zbl 0488.35017
[29] Weissler, F. B., Logarithmic Sobolev inequalities for the heat-diffusion semigroup, Trans. Amer. Math. Soc., 237, 255-269 (1978) · Zbl 0376.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.