×

The general optimal \(L^{p}\)-Euclidean logarithmic Sobolev inequality by Hamilton–Jacobi equations. (English) Zbl 1173.35424

The author presents a general optimal \(L^p\)-Euclidean logarithmic Sobolev inequality by using the Prẹkopa-Leinder inequality and a special Hamilton-Jacobi equation.

MSC:

35J20 Variational methods for second-order elliptic equations
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
26D10 Inequalities involving derivatives and differential and integral operators
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47D06 One-parameter semigroups and linear evolution equations
Full Text: DOI

References:

[1] Barles, G., Solutions De Viscosité Des Équations De Hamilton-Jacobi (1994), Springer: Springer Paris · Zbl 0819.35002
[2] Beckner, W., Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math., 11, 1, 105-137 (1999) · Zbl 0917.58049
[3] Bobkov, S. G.; Gentil, I.; Ledoux, M., Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl. (9), 80, 7, 669-696 (2001) · Zbl 1038.35020
[4] Brenier, Y., Polar factorisation and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44, 4, 213-242 (1991)
[5] Carlen, E. A., Superadditivity of Fisher’s information and logarithmic Sobolev inequalities, J. Funct. Anal., 101, 1, 194-211 (1991) · Zbl 0732.60020
[6] D. Cordero-Erausquin, B. Nazaret, C. Villni, A mass-transportation approach to sharp Sobolev and Gagliardo-Niremberg inequalities, 2002, preprint.; D. Cordero-Erausquin, B. Nazaret, C. Villni, A mass-transportation approach to sharp Sobolev and Gagliardo-Niremberg inequalities, 2002, preprint.
[7] Das Gupta, S., Brunn-Minkowski inequality and its aftermath, J. Multivariate Anal., 10, 3, 296-318 (1980) · Zbl 0467.26008
[8] Del Pino, M.; Dolbeault, J., The Optimal Euclidean \(L^p\)-Sobolev logarithmic inequality, J. Funct. Anal., 174, 151-161 (2003) · Zbl 1091.35029
[9] Del Pino, M.; Dolbeault, J., Best constants for Gagliardo-Niremberg inequalities and application to nonlinear diffusions, J. Math. Pures Appl., 81, 847-875 (2002) · Zbl 1112.35310
[10] Evans, L. C., Partial Differential Equations (1998), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0902.35002
[11] Gentil, I., Ultracontractive bounds on Hamilton-Jacobi equations, Bull. Sci. Math., 126, 507-524 (2002) · Zbl 1015.35019
[12] M. Ledoux, Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory and Statistiques. Ecole d’été de probabilités de St-Flour 1994, Lecture Notes in Mathematics, Vol. 1648, Springer, Berlin, 1996, pp. 165-294.; M. Ledoux, Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory and Statistiques. Ecole d’été de probabilités de St-Flour 1994, Lecture Notes in Mathematics, Vol. 1648, Springer, Berlin, 1996, pp. 165-294. · Zbl 0874.60005
[13] McCann, R. J., Existence and uniqueness of monotone measure-preserving maps, Duke Math. J., 80, 2, 309-323 (1995) · Zbl 0873.28009
[14] Weissler, F. B., Logarithmic Sobolev inequalities for the heat-diffusion semigroup, Trans. Amer. Math. Soc., 237, 255-269 (1978) · Zbl 0376.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.