×

Sensor fault reconstruction and observability for unknown inputs, with an application to wastewater treatment plants. (English) Zbl 1245.93025

Summary: We propose a general methodology for identifying and reconstructing sensor faults on dynamical processes. This methodology is issued from the general identification theory developed in the previous papers by E.Busvelle, J. P. Gauthier [‘’On Determining Unknown Functions in Differential Systems, with an Application to Biological Reactor”, ESAIM: Control, Optimisation and Calculus of Variations, 9, 509–551 (2003; Zbl 1063.93011)]; E.Busvelle, J. P. Gauthier [”New Results on Identifiability of Nonlinear Systems”, in 2nd Symposium on Systems, Structure and Control, Oaxaca, Mexico (2004)], E.Busvelle, J. P. Gauthier [”Observation and Identification Tools for Non Linear Systems. Application to a Fluid Catalytic Cracker’, International Journal of Control, 78, 208–234 (2005; Zbl 1074.93507): in fact, this identification theory also provides a general framework for the problem of ‘observability with unknown inputs’. Indeed, many problems of fault detection can be formulated as such observability problems, the (eventually additive) faults being just considered as unknown inputs. Our application to ‘sensor fault detection’ for WasteWater Treatment Plants (WWTP) constitutes an ideal academic context to apply the theory: first, in this 3-5 case (3 sensors, 5 states), the theory applies generically and, second, any system is naturally under the ‘observability canonical form’ required to apply the basic high-gain observer from P. Gauthier and I. Kupka [”Observability and Observers for Nonlinear Systems”, SIAM Journal on Control, 32, 975–994 (1994; Zbl 0802.93008)]. A simulation study on the Bleesbrük WWTP is proposed to show the effectiveness of this approach.

MSC:

93B07 Observability
93B30 System identification
92D40 Ecology
Full Text: DOI

References:

[1] DOI: 10.1016/S0005-1098(03)00059-1 · Zbl 1035.93024 · doi:10.1016/S0005-1098(03)00059-1
[2] DOI: 10.1051/cocv:2003025 · Zbl 1063.93011 · doi:10.1051/cocv:2003025
[3] Busvelle E, in 2nd Symposium on Systems, Structure and Control (2004)
[4] DOI: 10.1080/00207170500036027 · Zbl 1074.93507 · doi:10.1080/00207170500036027
[5] Chachuat B, Revue des Sciences de L’eau/Journal of Water Science 16 pp 05– (2003)
[6] Chen J, Robust Model-based Fault Diagnosis for Dynamic Systems (1999) · Zbl 0920.93001
[7] DOI: 10.1016/S0167-6911(00)00014-1 · Zbl 1031.93044 · doi:10.1016/S0167-6911(00)00014-1
[8] DOI: 10.1109/9.928586 · Zbl 1009.93003 · doi:10.1109/9.928586
[9] Edwards, C. 2004. A Comparison of Sliding Mode and Unknown Input Observers for Fault Reconstruction. inIEEE Conference on Decision and Control. 2004. Vol. 5, pp.5279–5284.
[10] DOI: 10.1016/0005-1098(90)90018-D · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-D
[11] Frank P-M, European Journal of Control 2 pp 6– (1996)
[12] DOI: 10.1016/S0959-1524(97)00016-4 · doi:10.1016/S0959-1524(97)00016-4
[13] DOI: 10.1137/S0363012991221791 · Zbl 0802.93008 · doi:10.1137/S0363012991221791
[14] DOI: 10.1007/BF02621588 · Zbl 0863.93008 · doi:10.1007/BF02621588
[15] DOI: 10.1017/CBO9780511546648 · doi:10.1017/CBO9780511546648
[16] DOI: 10.1051/cocv:2003017 · Zbl 1063.93012 · doi:10.1051/cocv:2003017
[17] DOI: 10.1016/S0005-1098(98)00021-1 · Zbl 0959.93006 · doi:10.1016/S0005-1098(98)00021-1
[18] Isermann R, Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Faulttolerant Systems, 1. ed. (2011) · Zbl 1304.94001
[19] Isermann R, in 13th IFAC World Congress pp 1– (1996)
[20] Jeppsson U, Water Science and Technology 28 pp 173– (1993)
[21] DOI: 10.1109/9.964696 · Zbl 1006.93068 · doi:10.1109/9.964696
[22] Mulas M, in 8th International Symposium on Dynamics and Control of Process Systems pp 213– (2007)
[23] Palade V, Computational Intelligence in Fault Diagnosis, 1. ed. (2010)
[24] Patton R-J, Applied Maths and Computer Science 3 pp 339– (1993)
[25] DOI: 10.1016/S0043-1354(02)00580-8 · doi:10.1016/S0043-1354(02)00580-8
[26] Steffens M-A, Water Science and Technology 31 pp 590– (1997)
[27] DOI: 10.1016/S0005-1098(02)00098-5 · Zbl 1011.93505 · doi:10.1016/S0005-1098(02)00098-5
[28] DOI: 10.1002/rnc.723 · Zbl 1036.93025 · doi:10.1002/rnc.723
[29] DOI: 10.1103/PhysRev.36.823 · JFM 56.1277.03 · doi:10.1103/PhysRev.36.823
[30] Yang, H and Saif, M. 1995. Fault Detection in a Class of Nonlinear Systems via Adaptive Sliding Observer. inProceedings of the IEEE International Conference on Systems, Man and Cybernetics. 1995. pp.2199–2204.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.