×

Numerical calculation of the discrete spectra of one-dimensional Schrödinger operators with point interactions. (English) Zbl 1468.34120

Summary: In this paper, we consider one-dimensional Schrödinger operators \(S_q\) on \(\mathbb{R}\) with a bounded potential \(q\) supported on the segment \([h_0,h_1]\) and a singular potential supported at the ends \(h_0, h_1\). We consider an extension of the operator \(S_q\) in \(L^2(\mathbb{R})\) defined by the Schrödinger operator \(\mathcal{H}_q=-\frac{d^2}{dx^2}+q\) and matrix point conditions at the ends \(h_0, h_1\). By using the spectral parameter power series method, we derive the characteristic equation for calculating the discrete spectra of operator \(\mathcal{H}_q\). Moreover, we provide closed-form expressions for the eigenfunctions and associate functions in the Jordan chain given in the form of power series of the spectral parameter. The validity of our approach is proven in several numerical examples including self-adjoint and nonself-adjoint problems involving general point interactions described in terms of \(\delta\)- and \(\delta^\prime\)-distributions.

MSC:

34L16 Numerical approximation of eigenvalues and of other parts of the spectrum of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34L05 General spectral theory of ordinary differential operators
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators
Full Text: DOI

References:

[1] KurasovP. Distribution theory for discontinuous test functions and differential operators with generalized coefficients. J Math Anal Appl. 1996;201(1):297‐323. https://doi.org/10.1006/jmaa.1996.0256 · Zbl 0878.46030 · doi:10.1006/jmaa.1996.0256
[2] AlbeverioS, KurasovP. Singular Perturbations of Differential Operators, London Mathematical Society Lecture Note Series, vol. 271. Cambridge: Cambridge University Press; 2000.
[3] AlbeverioS, GesztesyF, Høegh‐KrohnR, HoldenH. Solvable Models in Quantum Mechanics, 2nd edn. Providence, RI: AMS Chelsea Publ; 2004.
[4] BehrndtJ, ExnerP, LotoreichikV. Essential spectrum of Schrödinger operators with δ‐interactions on the union of compact Lipschitz hypersurfaces. Proc Appl Math Mech. 2013;13(1):523‐524. https://doi.org/10.1002/pamm.201310254 · doi:10.1002/pamm.201310254
[5] BehrndtJ, LangerM, LotoreichikV. Schrödinger operators with δ and δ′‐potentials supported on hypersurfaces. Ann Henri Poincaré. 2013;14(2):385‐423. https://doi.org/10.1007/s00023-012-0189-5 · Zbl 1275.81027 · doi:10.1007/s00023-012-0189-5
[6] BerezinFA, FaddeevLD. A remark on Schrödinger operators with a singular potentials. Soviet Mathematics Doklady. 1961;2:372‐375. (Dokl. Akad. Nauk Ser.Fiz. 1961; 137:1011-1014). · Zbl 0117.06601
[7] BirmanMS, SuslinaTA, ShterenbergRG. Absolute continuity of the two‐dimensional Schrödinger operator with delta potential concentrated on a periodic system of curves. Algebra i Analiz. 2001;12(6):140‐177. · Zbl 0998.35006
[8] BrascheJF, ExnerP, Kuperin YuA, ŠebaP. Schrödinger operators with singular interactions. J Math Anal Appl. 1994;184(1):112‐139. https://doi.org/10.1006/jmaa.1994.1188 · Zbl 0820.47005 · doi:10.1006/jmaa.1994.1188
[9] ExnerP, YoshitomiK. Band gap of the Schrödinger operator with a strong δ‐interaction on a periodic curve. Ann Henri Poincaré,. 2001;2(6):1139‐1158. https://doi.org/10.1007/s00023-001-8605-2 · Zbl 1035.81020 · doi:10.1007/s00023-001-8605-2
[10] ExnerP, KondejS. Bound states due to a strong δ interaction supported by a curved surface. J Phys A Math Gen. 2003;36(2):443‐457. · Zbl 1050.81009
[11] ExnerP. Spectral Properties of Schrödinger Operators with a Strongly Attractive Delta Interaction Supported by a Surface. In: KuchmentP (ed.), ed. Waves in Periodic and Random Media, Contemporary Mathematics Series, vol. 339. Providence, RI: American Mathematical Society. Proceedings of an AMS‐IMS‐SIAM Joint Summer Research Conference on Waves in Periodic and Random Media, Mt. Holyoke. MA 2002; 2003:25‐36. · Zbl 1044.35037
[12] ExnerP, YoshitomiK. Eigenvalue asymptotics for the Schrödinger operator with a δ‐interaction on a punctured surface. Lett Math Phys. 2003;65(1):19‐26. https://doi.org/10.1023/A:1027367605285 · Zbl 1108.35131 · doi:10.1023/A:1027367605285
[13] KravchenkoVV, PorterRM. Spectral parameter power series for Sturm‐Liouville problems. Math Methods Appl Sci. 2010;33(4):459‐468. https://doi.org/10.1002/mma.1205 · Zbl 1202.34060 · doi:10.1002/mma.1205
[14] Barrera‐FigueroaV, RabinovichVS, Maldonado‐RosasM. Numerical estimates of the essential spectra of quantum graphs with delta‐interactions at vertices. https://doi.org/10.1080/00036811.2017.1419201; 2017. · Zbl 1412.81142 · doi:10.1080/00036811.2017.1419201
[15] Barrera‐FigueroaV. Analysis of the spectral singularities of Schrödinger operator with complex potential by means of the SPPS method. J Phys Conf Ser. 2016;698(1):012029. https://doi.org/10.1088/1742-6596/698/1/012029 · doi:10.1088/1742-6596/698/1/012029
[16] Castillo‐PérezR, KravchenkoVV, Oviedo‐GaldeanoH, RabinovichVS. Dispersion equation and eigenvalues for quantum wells using spectral parameter power series. J Math Phys. 2011;52(4):043522. https://doi.org/10.1063/1.3579991 · Zbl 1316.81023 · doi:10.1063/1.3579991
[17] GadellaM, NegroJ, NietoLM. Bound states and scattering coefficients of the \(- a \delta \left(x\right) + b \delta^\prime \left(x\right)\) potential. Phys Lett A. 2009;373(15):1310‐1313. https://doi.org/10.1016/j.physleta.2009.02.025 · Zbl 1228.81149 · doi:10.1016/j.physleta.2009.02.025
[18] MiltonKA. Casimir energies and pressures for δ‐function potentials. J Phys A Math Gen. 2004;37:6391‐6406. https://doi.org/10.1088/0305-4470/37/24/014 · Zbl 1061.81534 · doi:10.1088/0305-4470/37/24/014
[19] Mateos‐GuilarteJ, Muñoz‐CastañedaJM. Double‐delta potentials: one dimensional scattering. The Casimir effect and kink fluctuations. Int J Theor Phys. 2011;50(7):2227‐2241. https://doi.org/10.1007/s10773-011-0723-0 · Zbl 1226.81145 · doi:10.1007/s10773-011-0723-0
[20] 1BerezinFA, ShubinMA. The Schrödinger Equation. Dordrecht: Kluwer Academic Publ; 1991. · Zbl 0749.35001
[21] Cohen‐TannoudjiC, DiuB, LaloëF. Quantum Mechanics, Chap. 1, vol. 1. France: John Wiley & Sons, Inc. & Hermann; 1977.
[22] NovotnyL. Strong coupling, energy splitting, and level crossings: A classical perspective. Am J Phys. 2010;78(11):1199‐1202. https://doi.org/10.1119/1.3471177 · doi:10.1119/1.3471177
[23] GreenbergL, MarlettaM. Numerical solution of non‐self‐adjoint Sturm‐Liouville problems and related systems. SIAM J Numer Anal. 2001;38(6):1800‐1845. https://doi.org/10.1137/S0036142999358743 · Zbl 1001.34020 · doi:10.1137/S0036142999358743
[24] NaimarkMA. Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operators. New York: Frederick Ungar Publishing Co; 1967. §2.3. · Zbl 0219.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.