×

Quantum error correction: noise-adapted techniques and applications. (English) Zbl 1542.81323

Summary: The quantum computing devices of today have tens to hundreds of qubits that are highly susceptible to noise due to unwanted interactions with their environment. The theory of quantum error correction provides a scheme by which the effects of such noise on quantum states can be mitigated, paving the way for realising robust, scalable quantum computers. In this article we survey the current landscape of quantum error correcting (QEC) codes, focusing on recent theoretical advances in the domain of noise-adapted QEC, and highlighting some key open questions. We also discuss the interesting connections that have emerged between such adaptive QEC techniques and fundamental physics, especially in the areas of many-body physics and cosmology. We conclude with a brief review of the theory of quantum fault tolerance which gives a quantitative estimate of the physical noise threshold below which error-resilient quantum computation is possible.

MSC:

81P73 Computational stability and error-correcting codes for quantum computation and communication processing
60H50 Regularization by noise

References:

[1] Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, JC; Barends, R.; Biswas, R.; Boixo, S.; Brandao, FG; Buell, DA, Quantum supremacy using a programmable superconducting processor, Nature, 574, 7779, 505-510, (2019)
[2] Zhong, H-S; Deng, Y-H; Qin, J.; Wang, H.; Chen, M-C; Peng, L-C; Luo, Y-H; Wu, D.; Gong, S-Q; Su, H., Phase-programmable gaussian boson sampling using stimulated squeezed light, Phys Rev Lett, 127, 18, 180205, (2021)
[3] Preskill, J., Quantum computing in the nisq era and beyond, Quantum, 2, 79, (2018)
[4] Lidar, DA; Brun, TA, Quantum error correction, (2013), Cambridge: Cambridge University Press, Cambridge
[5] Shor, PW, Scheme for reducing decoherence in quantum computer memory, Phys Rev A, 52, 2493-2496, (1995) · doi:10.1103/PhysRevA.52.R2493
[6] Calderbank, AR; Shor, PW, Good quantum error-correcting codes exist, Phys Rev A, 54, 1098-1105, (1996) · Zbl 07918813 · doi:10.1103/PhysRevA.54.1098
[7] Steane, AM, Error correcting codes in quantum theory, Phys Rev Lett, 77, 793-797, (1996) · Zbl 0944.81505 · doi:10.1103/PhysRevLett.77.793
[8] Wootters, WK; Zurek, WH, A single quantum cannot be cloned, Nature, 299, 5886, 802-803, (1982) · Zbl 1369.81022
[9] Knill, E.; Laflamme, R., Theory of quantum error-correcting codes, Phys Rev A, 55, 900-911, (1997) · doi:10.1103/PhysRevA.55.900
[10] Schumacher, B.; Nielsen, MA, Quantum data processing and error correction, Phys Rev A, 54, 2629-2635, (1996) · doi:10.1103/PhysRevA.54.2629
[11] Nielsen, MA; Chuang, IL, Quantum computation and quantum information, (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 1049.81015
[12] Gottesman, D., Stabilizer codes and quantum error correction, (1997), California: California Institute of Technology, California
[13] Terhal, BM, Quantum error correction for quantum memories, Rev Mod Phys, 87, 2, 307, (2015)
[14] Bombín H (2013) An introduction to topological quantum codes. arXiv preprint arXiv:1311.0277
[15] Raussendorf, R.; Harrington, J., Fault-tolerant quantum computation with high threshold in two dimensions, Phys Rev Lett, 98, 19, 190504, (2007)
[16] Leung, DW; Nielsen, MA; Chuang, IL; Yamamoto, Y., Approximate quantum error correction can lead to better codes, Phys Rev A, 56, 2567-2573, (1997)
[17] Ng, HK; Mandayam, P., Simple approach to approximate quantum error correction based on the transpose channel, Phys Rev A, 81, 062342, (2010)
[18] Fletcher, AS; Shor, PW; Win, MZ, Channel-adapted quantum error correction for the amplitude damping channel, IEEE Trans Inf Theory, 54, 12, 5705-5718, (2008) · Zbl 1247.81092
[19] Fletcher, AS; Shor, PW; Win, MZ, Optimum quantum error recovery using semidefinite programming, Phys Rev A, 75, 1, 012338, (2007)
[20] Bény, C.; Oreshkov, O., General conditions for approximate quantum error correction and near-optimal recovery channels, Phys Rev Lett, 104, 12, 120501, (2010)
[21] Tyson, J., Two-sided bounds on minimum-error quantum measurement, on the reversibility of quantum dynamics, and on maximum overlap using directional iterates, J Math Phys, 51, 9, 092204, (2010) · Zbl 1309.81023
[22] Mandayam, P.; Ng, HK, Towards a unified framework for approximate quantum error correction, Phys Rev A, 86, 1, 012335, (2012)
[23] Barnum, H.; Knill, E., Reversing quantum dynamics with near-optimal quantum and classical fidelity, J Math Phys, 43, 5, 2097-2106, (2002) · Zbl 1059.81027
[24] Ohya, M.; Petz, D., Quantum entropy and its use, (2004), Berlin: Springer, Berlin
[25] Jayashankar, A.; Babu, AM; Ng, HK; Mandayam, P., Finding good quantum codes using the cartan form, Phys. Rev. A, 101, 042307, (2020)
[26] Johnson PD, Romero J, Olson J, Cao Y, Aspuru-Guzik A (2017) Qvector: an algorithm Dfor device-tailored quantum error correction. arXiv preprint arXiv:1711.02249
[27] Cao C, Zhang C, Wu Z, Grassl M, Zeng B (2022) Quantum variational learning for quantum error-correcting codes. arXiv preprint arXiv:2204.03560
[28] Fösel, T.; Tighineanu, P.; Weiss, T.; Marquardt, F., Reinforcement learning with neural networks for quantum feedback, Phys. Rev. X, 8, 031084, (2018) · doi:10.1103/PhysRevX.8.031084
[29] Kibe, Tanay; Mandayam, P.; Mukhopadhyay, A., Holographic spacetime, black holes and quantum error correcting codes: a review, Eur. Phys. J. C, 82, 5, 463, (2022) · doi:10.1140/epjc/s10052-022-10382-1
[30] Preskill J (1998) Fault-tolerant quantum computation. In: Introduction to quantum computation and information. World Scientific, pp 213-269
[31] Knill, E., Quantum computing with realistically noisy devices, Nature, 434, 7029, 39-44, (2005)
[32] Aliferis, P.; Gottesman, D.; Preskill, J., Quantum accuracy threshold for concatenated distance-3 codes, Quantum Inf Comput, 6, 2, 97-165, (2006) · Zbl 1152.81671
[33] Jayashankar, A.; Long, MDH; Ng, HK; Mandayam, P., Achieving fault tolerance against amplitude-damping noise, Phys Rev Res, 4, 023034, (2022) · doi:10.1103/PhysRevResearch.4.023034
[34] Jayashankar A (2022) Adaptive quantum codes: constructions, applications and fault tolerance. arXiv preprint arXiv:2203.03247
[35] Cao, E.; Lin, W.; Sun, M.; Liang, W.; Song, Y., Exciton-plasmon coupling interactions: from principle to applications, Nanophotonics, 7, 1, 145-167, (2018)
[36] Kribs, D.; Laflamme, R.; Poulin, D., Unified and generalized approach to quantum error correction, Phys Rev Lett, 94, 18, 180501, (2005)
[37] Laflamme, R.; Miquel, C.; Paz, JP; Zurek, WH, Perfect quantum error correcting code, Phys Rev Lett, 77, 198-201, (1996)
[38] Petz, D., Monotonicity of quantum relative entropy revisited, Rev Math Phys, 15, 1, 79-91, (2003) · Zbl 1134.82303
[39] Bény, C.; Oreshkov, O., General conditions for approximate quantum error correction and near-optimal recovery channels, Phys Rev Lett, 104, 120501, (2010) · doi:10.1103/PhysRevLett.104.120501
[40] Schumacher, B.; Westmoreland, MD, Approximate quantum error correction, Quantum Inf Process, 1, 1, 5-12, (2002)
[41] Len, YL; Ng, HK, Open-system quantum error correction, Phys Rev A, 98, 2, 022307, (2018)
[42] Surace J, Scandi M (2022) State retrieval beyond Bayes’ retrodiction and reverse processes. arXiv:2201.09899
[43] Lautenbacher, L.; de Melo, F.; Bernardes, NK, Approximating invertible maps by recovery channels: optimality and an application to non-Markovian dynamics, Phys Rev A, 105, 042421, (2022) · doi:10.1103/PhysRevA.105.042421
[44] Kwon, H.; Mukherjee, R.; Kim, MS, Reversing lindblad dynamics via continuous petz recovery map, Phys Rev Lett, 128, 020403, (2022) · doi:10.1103/PhysRevLett.128.020403
[45] Lami, L.; Das, S.; Wilde, MM, Approximate reversal of quantum gaussian dynamics, J Phys A Math Theor, 51, 12, 125301, (2018) · Zbl 1390.81101
[46] Gilyén, A.; Lloyd, S.; Marvian, I.; Quek, Y.; Wilde, MM, Quantum algorithm for petz recovery channels and pretty good measurements, Phys Rev Lett, 128, 22, 220502, (2022)
[47] Yamamoto, N.; Hara, S.; Tsumura, K., Suboptimal quantum-error-correcting procedure based on semidefinite programming, Phys Rev A, 71, 022322, (2005) · doi:10.1103/PhysRevA.71.022322
[48] Kosut, RL; Lidar, DA, Quantum error correction via convex optimization, Quantum Inf Process, 8, 5, 443-459, (2009) · Zbl 1175.81074
[49] Fletcher AS (2007) Channel-adapted quantum error correction. arXiv preprint arXiv:0706.3400
[50] Cochrane, PT; Milburn, GJ; Munro, WJ, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys Rev A, 59, 2631-2634, (1999) · doi:10.1103/PhysRevA.59.2631
[51] Li, L.; Zou, C-L; Albert, VV; Muralidharan, S.; Girvin, SM; Jiang, L., Cat codes with optimal decoherence suppression for a lossy bosonic channel, Phys Rev Lett, 119, 030502, (2017) · doi:10.1103/PhysRevLett.119.030502
[52] Michael, MH; Silveri, M.; Brierley, R.; Albert, VV; Salmilehto, J.; Jiang, L.; Girvin, SM, New class of quantum error-correcting codes for a bosonic mode, Phys Rev X, 6, 3, 031006, (2016)
[53] Lang R, Shor PW (2007) Nonadditive quantum error correcting codes adapted to the ampltitude damping channel. arXiv preprint arXiv:0712.2586
[54] Shor, PW; Smith, G.; Smolin, JA; Zeng, B., High performance single-error-correcting quantum codes for amplitude damping, IEEE Trans Inf Theory, 57, 10, 7180-7188, (2011) · Zbl 1365.81044 · doi:10.1109/TIT.2011.2165149
[55] Cafaro, C.; van Loock, P., Approximate quantum error correction for generalized amplitude-damping errors, Phys Rev A, 89, 2, 022316, (2014)
[56] Khaneja, N.; Glaser, SJ, Cartan decomposition of su (2n) and control of spin systems, Chem Phys, 267, 11-23, (2001)
[57] Earp, HNS; Pachos, JK, A constructive algorithm for the cartan decomposition of su(2n), J Math Phys, 46, 8, 082108, (2005) · Zbl 1110.81098
[58] Bausch, J.; Leditzky, F., Quantum codes from neural networks, New J Phys, 22, 2, 023005, (2020)
[59] Nautrup, HP; Delfosse, N.; Dunjko, V.; Briegel, HJ; Friis, N., Optimizing quantum error correction codes with reinforcement learning, Quantum, 3, 215, (2019)
[60] Dennis, E.; Kitaev, A.; Landahl, A.; Preskill, J., Topological quantum memory, J Math Phys, 43, 9, 4452-4505, (2002) · Zbl 1060.94045
[61] Baskaran, G.; Mandal, S.; Shankar, R., Exact results for spin dynamics and fractionalization in the Kitaev model, Phys Rev Lett, 98, 24, 247201, (2007)
[62] Ferris, AJ; Poulin, D., Tensor networks and quantum error correction, Phys Rev Lett, 113, 3, 030501, (2014)
[63] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, J High Energy Phys, 2015, 6, 1-55, (2015) · Zbl 1388.81094
[64] Brandao, FGSL; Crosson, E.; Sahinoglu, MB; Bowen, J., Quantum error correcting codes in eigenstates of translation-invariant spin chains, Phys Rev Lett, 123, 110502, (2019) · doi:10.1103/PhysRevLett.123.110502
[65] Bohdanowicz TC, Crosson E, Nirkhe C, Yuen H (2019) Good approximate quantum ldpc codes from spacetime circuit hamiltonians. In: Proceedings of the 51st annual ACM SIGACT symposium on theory of computing. STOC. Association for Computing Machinery, New York, pp 481-490. doi:10.1145/3313276.3316384 · Zbl 1436.81029
[66] Bose, S., Quantum communication through spin chain dynamics: an introductory overview, Contemp Phys, 48, 1, 13-30, (2007)
[67] Bose, S., Quantum communication through an unmodulated spin chain, Phys Rev Lett, 91, 207901, (2003) · doi:10.1103/PhysRevLett.91.207901
[68] Burgarth, D.; Bose, S., Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels, Phys Rev A, 71, 052315, (2005)
[69] Osborne, TJ; Linden, N., Propagation of quantum information through a spin system, Phys Rev A, 69, 5, 052315, (2004)
[70] Allcock, J.; Linden, N., Quantum communication beyond the localization length in disordered spin chains, Phys Rev Lett, 102, 11, 110501, (2009)
[71] Kay, A., Quantum error correction for state transfer in noisy spin chains, Phys Rev A, 93, 042320, (2016) · doi:10.1103/PhysRevA.93.042320
[72] Jayashankar, A.; Mandayam, P., Pretty good state transfer via adaptive quantum error correction, Phys Rev A, 98, 052309, (2018)
[73] Almheiri, A.; Dong, X.; Harlow, D., Bulk locality and quantum error correction in ads/cft, J High Energy Phys, 2015, 4, 1-34, (2015) · Zbl 1388.81095
[74] Pastawski, F.; Preskill, J., Code properties from holographic geometries, Phys Rev X, 7, 2, 021022, (2017)
[75] Dong, X.; Harlow, D.; Wall, AC, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys Rev Lett, 117, 2, 021601, (2016)
[76] Jafferis, DL; Lewkowycz, A.; Maldacena, J.; Suh, SJ, Relative entropy equals bulk relative entropy, J High Energy Phys, 2016, 6, 1-20, (2016) · Zbl 1388.83268
[77] Cotler, J.; Hayden, P.; Penington, G.; Salton, G.; Swingle, B.; Walter, M., Entanglement wedge reconstruction via universal recovery channels, Phys Rev X, 9, 3, 031011, (2019)
[78] Junge M, Renner R, Sutter D, Wilde M.M, Winter A (2018) Universal recovery maps and approximate sufficiency of quantum relative entropy. In: Annales Henri Poincaré, vol 19. Springer, pp 2955-2978 · Zbl 1401.81025
[79] Chen, C-F; Penington, G.; Salton, G., Entanglement wedge reconstruction using the petz map, J High Energy Phys, 2020, 1, 1-14, (2020) · Zbl 1434.81011
[80] Jia, HF; Rangamani, M., Petz reconstruction in random tensor networks, J High Energy Phys, 2020, 10, 1-15, (2020) · Zbl 1456.81342
[81] Faulkner T, Hollands S, Swingle B, Wang Y (2022) Approximate recovery and relative entropy i: General von neumann subalgebras. Commun Math Phys 1-49 · Zbl 1525.46038
[82] Cross, AW; Divincenzo, DP; Terhal, BM, A comparative code study for quantum fault tolerance, Quantum Inf Comput, 9, 7, 541-572, (2009) · Zbl 1178.81034
[83] Campbell, ET; Terhal, BM; Vuillot, C., Roads towards fault-tolerant universal quantum computation, Nature, 549, 7671, 172-179, (2017)
[84] Wang, D-S; Wang, Y-J; Cao, N.; Zeng, B.; Laflamme, R., Theory of quasi-exact fault-tolerant quantum computing and valence-bond-solid codes, New J Phys, 24, 2, 023019, (2022)
[85] Wang, D-S; Zhu, G.; Okay, C.; Laflamme, R., Quasi-exact quantum computation, Phys Rev Res, 2, 033116, (2020) · doi:10.1103/PhysRevResearch.2.033116
[86] Eastin, B.; Knill, E., Restrictions on transversal encoded quantum gate sets, Phys Rev Lett, 102, 11, 110502, (2009)
[87] Aliferis, P.; Preskill, J., Fault-tolerant quantum computation against biased noise, Phys Rev A, 78, 052331, (2008) · doi:10.1103/PhysRevA.78.052331
[88] Puri, S.; St-Jean, L.; Gross, JA; Grimm, A.; Frattini, NE; Iyer, PS; Krishna, A.; Touzard, S.; Jiang, L.; Blais, A., Bias-preserving gates with stabilized cat qubits, Sci Adv, 6, 34, 5901, (2020)
[89] Xu, Q.; Iverson, JK; Brandão, FG; Jiang, L., Engineering fast bias-preserving gates on stabilized cat qubits, Phys Rev Res, 4, 1, 013082, (2022)
[90] Jurcevic, P.; Javadi-Abhari, A.; Bishop, LS; Lauer, I.; Bogorin, DF; Brink, M.; Capelluto, L.; Günlük, O.; Itoko, T.; Kanazawa, N., Demonstration of quantum volume 64 on a superconducting quantum computing system, Quantum Sci Technol, 6, 2, 025020, (2021)
[91] Pokharel, B.; Anand, N.; Fortman, B.; Lidar, DA, Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits, Phys Rev Lett, 121, 22, 220502, (2018)
[92] Ghosh, D.; Agarwal, P.; Pandey, P.; Behera, BK; Panigrahi, PK, Automated error correction in ibm quantum computer and explicit generalization, Quantum Inf Process, 17, 6, 1-24, (2018) · Zbl 1448.81276
[93] Wootton, JR; Loss, D., Repetition code of 15 qubits, Phys Rev A, 97, 5, 052313, (2018)
[94] Bharti, K.; Cervera-Lierta, A.; Kyaw, TH; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, JS; Menke, T.; Mok, W-K; Sim, S.; Kwek, L-C; Aspuru-Guzik, A., Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys., 94, 015004, (2022) · doi:10.1103/RevModPhys.94.015004
[95] Dumitrescu, EF; McCaskey, AJ; Hagen, G.; Jansen, GR; Morris, TD; Papenbrock, T.; Pooser, RC; Dean, DJ; Lougovski, P., Cloud quantum computing of an atomic nucleus, Phys Rev Lett, 120, 21, 210501, (2018)
[96] Piedrafita, Á.; Renes, JM, Reliable channel-adapted error correction: Bacon-shor code recovery from amplitude damping, Phys Rev Lett, 119, 25, 250501, (2017)
[97] Cao N, Lin J, Kribs D, Poon Y.-T, Zeng B, Laflamme R (2021) Nisq: Error correction, mitigation, and noise simulation. arXiv preprint arXiv:2111.02345
[98] Suzuki, Y.; Endo, S.; Fujii, K.; Tokunaga, Y., Quantum error mitigation as a universal error reduction technique: applications from the nisq to the fault-tolerant quantum computing eras, PRX Quantum, 3, 010345, (2022) · doi:10.1103/PRXQuantum.3.010345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.