×

Asymptotic tracking control for constrained nonstrict-feedback MIMO nonlinear systems via parameter compensations. (English) Zbl 1466.93094

Summary: This paper studies the problem of adaptive fuzzy asymptotic tracking control for multiple input multiple output nonlinear systems in nonstrict-feedback form. Full state constraints, input quantization, and unknown control direction are simultaneously considered in the systems. By using the fuzzy logic systems, the unknown nonlinear functions are identified. A modified partition of variables is introduced to handle the difficulty caused by nonstrict-feedback structure. In each step of the backstepping design, the symmetric barrier Lyapunov functions are designed to avoid the breach of the state constraints, and the issues of overparametrization and unknown control direction are settled via introducing two compensation functions and the property of Nussbaum function, respectively. Furthermore, an adaptive fuzzy asymptotic tracking control strategy is raised. Based on Lyapunov stability analysis, the developed control strategy can effectually ensure that all the system variables are bounded, and the tracking errors asymptotically converge to zero. Eventually, simulation results are supplied to verify the feasibility of the proposed scheme.

MSC:

93C42 Fuzzy control/observation systems
93C40 Adaptive control/observation systems
93C35 Multivariable systems, multidimensional control systems
93B52 Feedback control
Full Text: DOI

References:

[1] SofianosNA, BoutalisYS. Stable indirect adaptive switching control for fuzzy dynamical systems based on T‐ S multiple models. Int J Syst Sci. 2013;44(8):1546‐1565. · Zbl 1277.93048
[2] YooSJ. Distributed consensus tracking for multiple uncertain nonlinear strict‐feedback systems under a directed graph. IEEE Trans Neural Netw Learn Syst. 2013;24(4):666‐672.
[3] LiZ, GaoL, ChenW, XuY. Distributed adaptive cooperative tracking of uncertain nonlinear fractional‐order multiagent systems. IEEE/CAA J Automat Sinica. 2019;7(1):292‐300.
[4] LiH, WangY, YaoD, LuR. A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems. Automatica. 2018;97:404‐413. · Zbl 1406.93370
[5] WuC, WuL, LiuJ, JiangZ. Active defense‐based resilient sliding mode control under denial‐of‐service attacks. IEEE Trans Inf Forens Sec. 2019;15:237‐249.
[6] ChenZ, HanQ‐L, YanY, WuZ. How often should one update control and estimation: review of networked triggering techniques. Sci China Inf Sci. 2020;63(5):150201.
[7] YaoB, TomizukaM. Adaptive robust control of MIMO nonlinear systems in semi‐strict feedback forms. Automatica. 2001;37(9):1305‐1321. · Zbl 0983.93035
[8] SofianosNA, BoutalisYS. Robust adaptive multiple models based fuzzy control of nonlinear systems. Neurocomputing. 2016;173:1733‐1742.
[9] WangR, JingH, WangJ, ChadliM, ChenN. Robust output‐feedback based vehicle lateral motion control considering network‐induced delay and tire force saturation. Neurocomputing. 2016;214:409‐419.
[10] CaoL, LiH, DongG, LuR. Event‐triggered control for multi‐agent systems with sensor faults and input saturation. IEEE Trans Syst Man Cybern Syst. 2019. https://doi.org/10.1109/TSMC.2019.2938216. · doi:10.1109/TSMC.2019.2938216
[11] ZhangL, LamHK, SunT, LiangH. Fault detection for fuzzy semi‐Markov jump systems based on interval type‐2 fuzzy approach. IEEE Trans Fuzzy Syst. 2019. https://doi.org/10.1109/TFUZZ.2019.2936333. · doi:10.1109/TFUZZ.2019.2936333
[12] DengF, ZhaoJ, CaiY. Blocked WDD‐FNN and applications in optical encoder error compensation. Sci China Inf Sci. 2020;63(7):179201.
[13] ShenH, HuoS, CaoJ, HuangT. Generalized state estimation for markovian coupled networks under round‐robin protocol and redundant channels. IEEE Trans Cybern. 2018;49(4):1292‐1301.
[14] DuP, LiangH, ZhaoS, AhnCK. Neural‐based decentralized adaptive finite‐time control for nonlinear large‐scale systems with time‐varying output constraints. IEEE Trans Syst Man Cybern Syst. 2019. https://doi.org/10.1109/TSMC.2019.2918351. · doi:10.1109/TSMC.2019.2918351
[15] LuR, XuY, XueA, ZhengJ. Networked control with state reset and quantized measurements: observer‐based case. IEEE Trans Ind Electr. 2012;60(11):5206‐5213.
[16] WangZ, LiuD. Data‐based controllability and observability analysis of linear discrete‐time systems. IEEE Trans Neural Netw. 2011;22(12):2388‐2392.
[17] ZhangXM, HanQL, WangJ. Admissible delay upper bounds for global asymptotic stability of neural networks with time‐varying delays. IEEE Trans Neural Netw. 2018;29(11):5319‐5329.
[18] ShengY, LewisFL, ZengZG, HuangTW. Lagrange stability and finite‐time stabilization of fuzzy memristive neural networks with hybrid time‐varying delays. IEEE Trans Cybern. 2019. https://doi.org/10.1109/TCYB.2019.2912890. · doi:10.1109/TCYB.2019.2912890
[19] ChenB, LiuX, LiuK, LinC. Direct adaptive fuzzy control of nonlinear strict‐feedback systems. Automatica. 2009;45(6):1530‐1535. · Zbl 1166.93341
[20] WangF, LiuZ, ZhangY, ChenCLP. Adaptive fuzzy control for a class of stochastic pure‐feedback nonlinear systems with unknown hysteresis. IEEE Trans Fuzzy Syst. 2016;24(1):140‐152.
[21] TongM, LinW, HuoX, JinZ, MiaoC. A model‐free fuzzy adaptive trajectory tracking control algorithm based on dynamic surface control. Int J Advanced Robotic Systems. 2020;17(1):1729881419894417.
[22] ChenB, LiuX, LinC. Observer and adaptive fuzzy control design for nonlinear strict‐feedback systems with unknown virtual control coefficients. IEEE Trans Fuzzy Syst. 2018;26(3):1732‐1743.
[23] ZhangY, LiH, SunJ, HeW. Cooperative adaptive event‐triggered control for multi‐agent systems with actuator failures. IEEE Trans Syst Man Cybern Syst. 2018;49(9):1759‐1768.
[24] YousefHA, KhalfanAK, AlbadiMH, HosseinzadehN. Load frequency control of a multi‐area power system: an adaptive fuzzy logic approach. IEEE Trans Power Syst. 2014;29(4):1822‐1830.
[25] PanY, YangG. Event‐driven fault detection for discrete‐time interval type‐2 fuzzy systems. IEEE Trans Syst Man Cybern Syst. 2018. https://doi.org/10.1109/TSMC.2019.2945063. · doi:10.1109/TSMC.2019.2945063
[26] HuoX, MaL, ZhaoX, NiuB, ZongG. Observer‐based adaptive fuzzy tracking control of MIMO switched nonlinear systems preceded by unknown backlash‐like hysteresis. Inf Sci. 2019;490:369‐386. · Zbl 1457.93054
[27] WangL, BasinMV, LiH, LuR. Observer‐based composite adaptive fuzzy control for nonstrict‐feedback systems with actuator failures. IEEE Trans Fuzzy Syst. 2017;26(4):2336‐2347.
[28] GuerraTM, SalaA, TanakaK. Fuzzy control turns 50: 10 years later. Fuzzy Sets Syst. 2015;218:168‐182. · Zbl 1368.93320
[29] WuC, LiuJ, JingX, LiH, WuL. Adaptive fuzzy control for nonlinear networked control systems. IEEE Trans Syst Man Cybern Syst. 2017;47(8):2420‐2430.
[30] ZhouQ, WangW, MaH, LiH. Event‐triggered fuzzy adaptive containment control for nonlinear multi‐agent systems with unknown Bouc‐Wen hysteresisinput. IEEE Trans Fuzzy Syst. 2019. https://doi.org/10.1109/TFUZZ.2019.2961642. · doi:10.1109/TFUZZ.2019.2961642
[31] TeeKP, GeSS, TayEH. Barrier Lyapunov functions for the control of output‐constrained nonlinear systems. Automatica. 2009;45(4):918‐927. · Zbl 1162.93346
[32] LiuY, TongS. Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica. 2017;76:143‐152. · Zbl 1352.93062
[33] LiX, WuJ. Stability of nonlinear differential systems with state‐dependent delayed impulses. Automatica. 2016;64:63‐69. · Zbl 1329.93108
[34] DengF, MaL, GaoX, ChenJ. The MR‐CA models for analysis of pollution sources and prediction of PM2.5. IEEE Trans Syst Man Cybern Syst. 2017;49(4):814‐820.
[35] LiX, ZhouQ, LiP, LiH, LuR. Event‐triggered consensus control for multi‐agent systems against false data injection attacks. IEEE Trans Cybern. 2019. https://doi.org/10.1109/TCYB.2019.2937951. · doi:10.1109/TCYB.2019.2937951
[36] LiX, SongS. Stabilization of delay systems: delay‐dependent impulsive control. IEEE Trans Automat Control. 2017;62(1):406‐411. · Zbl 1359.34089
[37] PrecupRE, DavidRC, PetriuEM, PreitlS, RadacMB. Novel adaptive gravitational search algorithm for fuzzy controlled servo systems. IEEE Trans Ind Inf. 2012;8(4):791‐800.
[38] JinX. Adaptive decentralized finite‐time output tracking control for MIMO interconnected nonlinear systems with output constraints and actuator faults. Int J Robust Nonlinear Control. 2018;28(5):1808‐1829. · Zbl 1390.93044
[39] ZhangXM, HanQL, WangZD, ZhangBL. Neuronal state estimation for neural networks with two additive time‐varying delay components. IEEE Trans Cybern. 2017;47(10):3184‐3194.
[40] LiangH, ZhangL, SunY, HuangT. Containment control of semi‐Markovian multi‐agent systems with switching topologies. IEEE Trans Syst Man Cybern Syst. 2019. https://doi.org/10.1109/TSMC.2019.2946248. · doi:10.1109/TSMC.2019.2946248
[41] ChoiHD, AhnCK, LimMT, SongMK. Dynamic output‐feedback H_∞ control for active half‐vehicle suspension systems with time‐varying input delay. Int J Control Automat Syst. 2016;14(1):59‐68.
[42] LiuY, TongS. Barrier Lyapunov functions‐based adaptive control for a class of nonlinear pure‐feedback systems with full state constraints. Automatica. 2016;64:70‐75. · Zbl 1329.93088
[43] ZhouQ, WangL, WuC, LiH, DuH. Adaptive fuzzy control for nonstrict‐feedback systems with input saturation and output constraint. IEEE Trans Syst Man Cybern Syst. 2017;47(1):1‐12.
[44] LiY, YangG. Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatica. 2016;72:177‐185. · Zbl 1344.93061
[45] WangF, ChenB, LinC, ZhangJ, MengX. Adaptive neural network finite‐time output feedback control of quantized nonlinear systems. IEEE Trans Cybern. 2017;48(6):7839‐1848.
[46] LiS, GeZM. Fuzzy modeling and synchronization of two totally different chaotic systems via novel fuzzy model. IEEE Trans Syst Man Cybern Part B (Cybern). 2011;41(4):1015‐1026.
[47] BianT, JiangZ. Reinforcement learning for linear continuous‐time systems: an incremental learning approach. IEEE/CAA J Automat Sinica. 2019;6(2):433‐440.
[48] LiangH, ZhangZ, AhnCK. Event‐triggered fault detection and isolation of discrete‐time systems based on geometric technique. IEEE Trans Circuits Syst II Exp Briefs. 2019;67(2):335‐339. https://doi.org/10.1109/TCSII.2019.2907706. · doi:10.1109/TCSII.2019.2907706
[49] MaH, ZhouQ, BaiL, LiangH. Observer‐based adaptive fuzzy fault‐tolerant control for stochastic nonstrict‐feedback nonlinear systems with input quantization. IEEE Trans Syst Man Cybern Syst. 2018;49(2):287‐298.
[50] LiH, ZhangZ, YanH, XieX. Adaptive event‐triggered fuzzy control for uncertain active suspension systems. IEEE Trans Cybern. 2018;49(12):4388‐4397.
[51] LiuZ, WangF, ZhangY, ChenCLP. Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems. IEEE Trans Cybern. 2017;46(2):524‐534.
[52] WangA, LiaoX, HeW. Event‐triggered differentially private average consensus for multi‐agent network. IEEE/CAA J Automat Sinica. 2019;6(1):75‐83.
[53] ZhangL, LiangH, SunY, AhnCK. Adaptive event‐triggered fault detection scheme for semi‐Markovian jump systems with output quantization. IEEE Trans Syst Man Cybern Syst. 2019. https://doi.org/10.1109/TSMC.2019.2912846. · doi:10.1109/TSMC.2019.2912846
[54] RehanM, AhnCK, ChadliM. Consensus of one‐sided Lipschitz multi‐agents under input saturation. IEEE Trans Circuits Syst II Exp Briefs. 2019. https://doi.org/10.1109/TCSII.2019.2923721. · doi:10.1109/TCSII.2019.2923721
[55] WangCC, YangGH. Adaptive decentralized fault‐tolerant tracking control for large‐scale nonlinear systems with input quantization. Int J Robust Nonlinear Control. 2018;28(9):3342‐3356. · Zbl 1396.93011
[56] ChenB, LinC, LiuX, LiuK. Adaptive fuzzy tracking control for a class of MIMO nonlinear systems in nonstrict‐feedback form. IEEE Trans Cybern. 2015;45(12):2744‐2755.
[57] CaoL, LiH, WangN, ZhouQ. Observer‐based adaptive event‐triggered control for nonstrict‐feedback nonlinear systems with output constraint and actuator failures. IEEE Trans Syst Man Cybern Syst. 2019. https://doi.org/10.1109/TSMC.2019.2895858. · doi:10.1109/TSMC.2019.2895858
[58] MaH, LiangH, MaH, ZhouQ. Nussbaum gain adaptive backstepping control of nonlinear strict‐feedback systems with unmodeled dynamics and unknown dead‐zone. Int J Robust Nonlinear Control. 2018;28(17):5326‐5343. · Zbl 1408.93075
[59] LiangH, ZhangY, HuangT, MaH. Prescribed performance cooperative control for multi‐agent systems with unknown control directions and input quantization. IEEE Trans Cybern. 2019. https://doi.org/10.1109/TCYB.2019.2893645. · doi:10.1109/TCYB.2019.2893645
[60] NussbaumRD. Some remarks on a conjecture in parameter adaptive control. Syst Control Lett. 1983;3(5):243‐246. · Zbl 0524.93037
[61] ZhouQ, ShiP, TianY, WangM. Approximation‐based adaptive tracking control for MIMO nonlinear systems with input saturation. IEEE Trans Cybern. 2014;45(10):2119‐2128.
[62] ChenC, LiuZ, XieK, ZhangY, ChenCLP. Asymptotic adaptive control of nonlinear systems with elimination of overparametrization in a Nussbaum‐like design. Automatica. 2018;98:277‐284. · Zbl 1406.93159
[63] ZhouQ, WangW, LiangH, BasinMV, WangB. Observer‐based event‐triggered fuzzy adaptive bipartite containment control of multi‐agent systems with input quantization. IEEE Trans Fuzzy Syst. 2015. https://doi.org/10.1109/TFUZZ.2019.2953573. · doi:10.1109/TFUZZ.2019.2953573
[64] PanY, YangG. Event‐triggered fault detection filter design for nonlinear networked systems. IEEE Trans Syst Man Cybern Syst. 2018;48(11):1851‐1862.
[65] HuoX, MaL, ZhaoX, ZongG. Event‐triggered adaptive fuzzy output feedback control of MIMO switched nonlinear systems with average dwell time. Appl Math Comput. 2020;365:124665. · Zbl 1433.93055
[66] LiX, ZhangB, LiP, ZhouQ, LuR. Finite‐horizon H∞ state estimation for periodic neural networks over fading channels. IEEE Trans Neural Netw Learn Syst. 2019. https://doi.org/10.1109/TNNLS.2019.2920368. · doi:10.1109/TNNLS.2019.2920368
[67] WangZ, XuY, LuR, PengH. Finite‐time state estimation for coupled Markovian neural networks with sensor nonlinearities. IEEE Trans Neural Netw. 2017;28(3):630‐638.
[68] ZhouQ, DuP, LiH, LuR, YangJ. Adaptive fixed‐time control of error‐constrained pure‐feedback interconnected nonlinear systems. IEEE Trans Syst Man Cybern Syst. 2019. https://doi.org/10.1109/TSMC.2019.2961371. · doi:10.1109/TSMC.2019.2961371
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.