×

A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems. (English) Zbl 1406.93370

Summary: This paper presents a Sliding Mode Control (SMC) method for a class of nonlinear Markovian Jump Singularly Perturbed Systems (MJSPSs). The system is subject to parameter uncertainties and partly unknown transition probabilities. To fully employ the model characteristics of such a hybrid system, a novel integral-type switching function is firstly designed. By adopting the \(\varepsilon\)-dependent stochastic Lyapunov function method, sufficient conditions are presented to ensure the mean-square asymptotic stability of the sliding mode dynamics. A mode-dependent fuzzy SMC law is then synthesized to induce and maintain the sliding motion despite partly unknown transition probabilities and parameter uncertainties. Finally, the developed method is applied to stabilize a modified series DC motor system.

MSC:

93E15 Stochastic stability in control theory
93B12 Variable structure systems
93D20 Asymptotic stability in control theory
93C70 Time-scale analysis and singular perturbations in control/observation systems
93C42 Fuzzy control/observation systems
Full Text: DOI

References:

[1] Basin, M.; Ferreira, A.; Fridman, L., Sliding mode identification and control for linear uncertain stochastic systems, International Journal of Systems Science, 38, 11, 861-869 (2006) · Zbl 1160.93396
[2] Basin, M.; Panathula, C.; Shtessel, Y.; Ramirez, P., Continuous finite-time higher order output regulators for systems with unmatched unbounded disturbances, IEEE Transactions on Industrial Electronics, 63, 8, 5036-5043 (2016)
[3] Basin, M.; Ramirez, P., Sliding mode filter design for nonlinear polynomial systems with unmeasured states, Information Sciences, 204, 204, 82-91 (2012) · Zbl 1251.93122
[4] Chen, B.; Niu, Y.; Zou, Y., Adaptive sliding mode control for stochastic Markovian jumping systems with actuator degradation, Automatica, 49, 6, 1748-1754 (2013) · Zbl 1360.93150
[5] Chen, B.; Niu, Y.; Zou, Y., Sliding mode control for stochastic Markovian jumping systems with incomplete transition rate, IET Control Theory & Applications, 7, 10, 1330-1338 (2013)
[6] Chen, W.; Wang, Z.; Wei, D.; Lu, X., Robust sampled-data \(H_\infty\) control of uncertain singularly perturbed systems using time-dependent Lyapunov functionals, International Journal of Systems Science, 46, 15, 2832-2852 (2014) · Zbl 1332.93248
[7] Fridman, E., Effects of small delays on stability of singularly perturbed systems, Automatica, 38, 5, 897-902 (2002) · Zbl 1014.93025
[8] Gao, Y.; Sun, B.; Lu, G., Passivity-based integral sliding-mode control of uncertain singularly perturbed systems, IEEE Transactions on Circuits and Systems II: Express Briefs, 58, 6, 386-390 (2011)
[9] Isidori, A., Nonlinear control systems springer-verlag (1995), Springer: Springer London · Zbl 0878.93001
[10] Kao, Y.; Xie, J.; Wang, C.; Karimi, H. R., A sliding mode approach to \(H_\infty\) non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems, Automatica, 52, 218-226 (2015) · Zbl 1309.93038
[11] Karimi, H. R., Robust delay-dependent control of uncertain time-delay systems with mixed neutral, discrete, and distributed time-delays and Markovian switching parameters, IEEE Transactions on Circuits and Systems. I. Regular Papers, 58, 8, 1910-1923 (2011) · Zbl 1468.93087
[12] Karimi, H. R.; Yazdanpanah, M. J.; Khorasani, K., Modeling and control of linear two-time scale systems: Applied to single-link flexible manipulator, Journal of Intelligent and Robotic Systems, 45, 3, 235-265 (2006)
[13] Khargonekar, P. P.; Petersen, I. R.; Zhou, K., Robust stabilization of uncertain linear systems: quadratic stabilizability and \(H_\infty\) control theory, IEEE Transactions on Automatic Control, 35, 3, 356-361 (1990) · Zbl 0707.93060
[14] Li, H.; Gao, H.; Shi, P.; Zhao, X., Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach, Automatica, 50, 7, 1825-1834 (2014) · Zbl 1296.93200
[15] Li, H.; Shi, P.; Yao, D.; Wu, L., Observer-based adaptive sliding mode control for nonlinear Markovian jump systems, Automatica, 64, 133-142 (2016) · Zbl 1329.93126
[16] Lin, K., Adaptive sliding mode control design for a class of uncertain singularly perturbed nonlinear systems, International Journal of Control, 87, 2, 432-439 (2014) · Zbl 1317.93066
[17] Liu, H. P.; Sun, F. C.; Sun, Z. Q., \(H_\infty\) control for Markovian jump linear singularly perturbed systems, IEE Proceedings-Control Theory and Applications, 151, 5, 637-644 (2004)
[18] Liu, D.; Wu, C.; Zhou, Q.; Lam, H., Fuzzy guaranteed cost output tracking control for fuzzy discrete time systems with different premise variables, Complexity, 21, 5, 265-276 (2015)
[19] Luenberger, D. G., Optimization by vector space methods (1969), Wiley: Wiley New York · Zbl 0176.12701
[20] Nagarale, R. M.; Patre, B. M., Composite fuzzy sliding mode control of nonlinear singularly perturbed systems, ISA Transactions, 53, 3, 679-689 (2014)
[21] Nguang, S. K.; Assawinchaichote, W.; Shi, P., Robust \(H_\infty\) control design for fuzzy singularly perturbed systems with Markovian jumps: an LMI approach, IET Control Theory & Applications, 1, 4, 893-908 (2007)
[22] Niu, Y.; Daniel, W. C.H.; Lam, J., Robust integral sliding mode control for uncertain stochastic systems with time-varying delay, Automatica, 41, 5, 873-880 (2005) · Zbl 1093.93027
[23] Shi, P.; Dragan, V., Asymptotic \(H_\infty\) control of singularly perturbed systems with parametric uncertainties, IEEE Transactions on Automatic Control, 44, 9, 1738-1742 (1999) · Zbl 0958.93066
[24] Shi, P.; Xia, Y.; Liu, G.; Rees, D., On designing of sliding-mode control for stochastic jump systems, IEEE Transactions on Automatic Control, 51, 1, 97-103 (2006) · Zbl 1366.93682
[25] Song, J.; Niu, Y.; Zou, Y., Finite-time sliding mode control synthesis under explicit output constraint, Automatica, 65, 111-114 (2015) · Zbl 1328.93235
[26] Vecchio, D.; Slotine, J. J., A contraction theory approach to singularly perturbed systems, IEEE Transactions on Automatic Control, 58, 3, 752-757 (2013) · Zbl 1369.92031
[27] Wang, G.; Huang, C.; Zhang, Q.; Yang, C., Stabilisation bound of stochastic singularly perturbed systems with Markovian switching by noise control, IET Control Theory and Applications, 8, 5, 367-374 (2014)
[28] Wang, Y.; Shen, H.; Karimi, H. R.; Duan, D., Dissipativity-based fuzzy integral sliding mode control of continuous-time T-S fuzzy systems, IEEE Transactions on Fuzzy Systems (2017)
[29] Wu, L.; Shi, P.; Gao, H., State estimation and sliding-mode control of Markovian jump singular systems, IEEE Transactions on Automatic Control, 55, 5, 1213-1219 (2010) · Zbl 1368.93696
[30] Wu, L.; Su, X.; Shi, P., Sliding mode control with bounded \(L_2\) gain performance of Markovian jump singular time-delay systems, Automatica, 48, 8, 1929-1933 (2012) · Zbl 1268.93037
[31] Xu, S.; Feng, G., New results on \(H_\infty\) control of discrete singularly perturbed systems, Automatica, 45, 10, 2339-2343 (2009) · Zbl 1179.93071
[32] Yang, G. H.; Dong, J., Control synthesis of singularly perturbed fuzzy systems, IEEE Transactions on Fuzzy Systems, 16, 3, 615-629 (2008)
[33] Yang, C.; Sun, J.; Ma, X., Stabilization bound of singularly perturbed systems subject to actuator saturation, Automatica, 49, 2, 457-462 (2013) · Zbl 1259.93077
[34] Yang, C.; Zhang, Q. L., Multiobjective control for T-S fuzzy singularly perturbed systems, IEEE Transactions on Fuzzy Systems, 17, 1, 104-115 (2009)
[35] Zhang, L.; Boukas, E.-K., Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities, Automatica, 45, 2, 463-468 (2009) · Zbl 1158.93414
[36] Zhang, L.; Lam, J., Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions, IEEE Transactions on Automatic Control, 55, 7, 1695-1701 (2010) · Zbl 1368.93782
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.