×

Spatial and temporal frequency-dependent conductivities in volume- conduction calculations for skeletal muscle. (English) Zbl 0637.92004

Summary: Impedance measurements using the four-electrode technique have revealed that the effective electrical conductivity of skeletal muscle is anisotropic and depends upon the temporal frequency and the distance between the current-passing electrodes. To incorporate these effects into a volume-conduction calculation, the conductivity must depend on both the temporal and spatial frequencies.
We report calculations of the electric potential produced by a single active muscle fiber embedded in skeletal-muscle tissue, and discuss the implications of the dependence of the conductivity on the spatial frequency for both skeletal-muscle electromyograms and compound action potentials in nerve bundles.

MSC:

92Cxx Physiological, cellular and medical topics
78A70 Biological applications of optics and electromagnetic theory
Full Text: DOI

References:

[1] Adrian, R. H.; Chandler, W. K.; Hodgkin, A. L., The kinetics of mechanical activation in frog muscle, J. Physiol., 204, 207-230 (1969)
[3] Albers, B. A.; Rutten, W. L.C.; Wallinga-de Jonge, W.; Boom, H. B.K., A model study on the influence of structure and membrane capacitance on volume conduction in skeletal muscle tissue, IEEE Trans. Biomed. Engrg., BME-33, 681-689 (1986)
[4] Andreassen, S.; Rosenfalck, A., Relationship of intracellular and extracellular action potentials of skeletal muscle fibers, CRC Crit. Rev. Bioengrg., 6, 267-306 (1981)
[5] Boyd, D. C.; Lawrence, P. D.; Bratty, P. J.A., On modeling the single motor unit action potential, IEEE Trans. Biomed. Engrg., BME-25, 236-243 (1978)
[6] Boyd, I. A.; Kalu, K. U., Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres in the cat hind limb, J. Physiol., 289, 277-297 (1979)
[7] Burger, H. C.; van Dongen, R., Specific electric resistance of body tissues, Phys. Med. & Biol., 5, 431-447 (1960)
[8] Clark, J. W.; Plonsey, R., A mathematical evaluation of the core-conductor model, Biophys. J., 6, 95-112 (1966)
[9] Clark, J. W.; Plonsey, R., The extracellular potential of the single active nerve fiber in a volume conductor, Biophys. J., 8, 842-864 (1968)
[10] Clark, J. W.; Greco, E. C.; Harman, T. L., Experience with a Fourier method for determining the extracellular potential fields of excitable cells with cylindrical geometry, CRC Crit. Rev. Bioengrg., 3, 1-22 (1978)
[11] Dimitrov, G.; Dimitrova, N., Extracellular potential field of a single striated muscle fiber immersed in anisotropic volume conductor, Electromyogr. Clin. Neurophysiol., 14, 423-436 (1974)
[12] Eisenberg, R. S., Impedance measurement of the electrical structure of skeletal muscle, (Handbook of Physiology, Section 10: Skeletal Muscle (1983), Amer. Physiol. Soc: Amer. Physiol. Soc Bethesda, Md)
[13] Epstein, B. R.; Foster, K. R., Anisotropy in the dielectric properties of skeletal muscle, Med. & Biol. Engrg. & Comput., 21, 51-55 (1983)
[14] Falk, G.; Fatt, P., Linear electrical properties of striated muscle fibres observed with intracellular electrodes, Proc. Roy. Soc. London. Ser. B. (Biol. Sci.), 160, 69-123 (1964)
[15] Ganapathy, N.; Clark, J. W.; Wilson, O. B., Extracellular potentials from skeletal muscle, Math. Biosci., 83, 61-96 (1987) · Zbl 0611.92008
[16] Ganapathy, N.; Clark, J. W.; Wilson, O. B.; Giles, W., Forward and inverse potential field solutions for cardiac strands of cylindrical geometry, IEEE Trans. Biomed. Engrg., BME-32, 566-577 (1985)
[17] Gath, I.; Stalberg, E., On the measurement of fiber density in human muscles, Electroenceph. and Clin. Neurophysiol., 54, 699-706 (1982)
[18] Geselowitz, D. B., Comment on the core conductor model, Biophys. J., 6, 691-692 (1966)
[19] Geselowitz, D. B.; Miller, W. T., A bidomain model for anisotropic cardiac muscle, Ann. Biomed. Engrg., 11, 191-206 (1983)
[20] Gielen, F. L.H., Elecrical Conductivity and Histological Structure of Skeletal Muscle, (Ph.D. Thesis (1983), Twente Univ. of Technology: Twente Univ. of Technology The Netherlands)
[21] Gielen, F. L.H.; Cruts, H. E.P.; Albers, B. A.; Boon, K. L.; Wallinga-de Jonge, W.; Boom, H. B.K., Model of electrical conductivity of skeletal muscle based on tissue structure, Med. & Biol. Engrg. & Comput., 24, 34-40 (1986)
[22] Gielen, F. L.H.; Wallinga-de Jonge, W.; Boon, K. L., Electrical conductivity of skeletal muscle tissue: Experimental results from different muscles in vivo, Med. & Biol. Engrg. & Comput., 22, 569-577 (1984)
[23] Griep, P. A.M.; Gielen, F. L.H.; Boom, H. B.K.; Boon, K. L.; Hoogstraten, L. L.W.; Pool, C. W.; Wallinga-de Jonge, W., Calculation and registration of the same motor unit action potential, Electroenceph. Clin. Neurophysiol., 53, 388-404 (1982)
[24] Lindstrom, L., A Model Describing the Power Spectrum of a Myoelectric Signal. Part 1: Single Fiber Signal, (Technical Report 5 (1973), Chalmers Univ: Chalmers Univ Gotenburg)
[25] Lorente de Nó, R., Analysis of the distribution of the action currents of nerves in volume conductors, Stud. Rockefeller Inst. Med. Res., 132, 384-497 (1947)
[26] Mathias, R. T.; Eisenberg, R. S.; Valdiosera, R., Electrical properties of frog skeletal muscle fibers interpreted with a mesh model of the tabular system, Biophys. J., 17, 57-93 (1977)
[27] Nandedkar, S. D.; Sigl, J. C.; Kim, Y. I.; Stalberg, E. V., Radial decline of the extracellular action-potential, Med. & Biol. Engrg. & Comput., 22, 564-568 (1984)
[28] Nandedkar, S. D.; Stalberg, E. V.; Sanders, D. B., Simulation techniques in electromyography, IEEE Trans. Biomed. Engrg., 32, 775-785 (1985)
[29] Paintal, A. S., The influence of diameter of medullated nerve fibers of cats on the rising and falling phases of the spike and its recovery, J. Physiol., 184, 791-811 (1966)
[30] Plonsey, R., Bioelectric Phenomena (1969), McGraw-Hill: McGraw-Hill New York
[31] Plonsey, R.; Barr, R. C., The four-electrode resistivity technique as applied to cardiac muscle, IEEE Trans. Biomed. Engrg., BME-29, 541-546 (1982)
[32] Ranck, J. B.; BeMent, S. L., The specific impedance of the dorsal columns of cat: An anisotropic medium, Exp. Neurol., 11, 451-463 (1965)
[33] Rosenfalck, P., Intra- and extracellular potential fields of active nerve and muscle fibers. A physico-mathematical analysis of different models, Acta Physiol. Scand. (Suppl. 321), 1 (1969)
[34] Roth, B. J.; Gielen, F. L.H., A comparison of two models for calculating the electrical potential in skeletal muscle, Ann. Biomed. Engrg., 15, 591-602 (1987)
[35] Roth, B. J.; Wikswo, J. P., The electrical potential and the magnetic field of an axon in a nerve bundle, Math. Biosci., 76, 37-57 (1985) · Zbl 0567.92005
[36] Roth, B. J.; Wikswo, J. P., The magnetic field of a single axon: A comparison of theory and experiment, Biophys. J., 48, 93-109 (1985)
[37] Roth, B. J.; Wikswo, J. P., A bidomain model for the extracellular potential and magnetic field of cardiac tissue, IEEE Trans. Biomed. Engrg., BME-33, 467-469 (1986)
[38] Rush, S.; Abildskov, J. A.; McFee, R., Resistivity of body tissues at low frequencies, Circ. Res., 12, 40-50 (1963)
[39] Schoonhoven, R.; Stegeman, D. F.; de Weerd, J. P.C., The forward problem in electroneurography. I: A generalized volume conductor model, IEEE Trans. Biomed. Engrg., BME-33, 321-334 (1986)
[40] Shankar, R., (Principles of Quantum Mechanics (1980), Plenum: Plenum New York), 71
[41] Spach, M. S.; Barr, R. C.; Serwer, G. A.; Kootsey, J. M.; Johnson, E. A., Extracellular potentials related to intracellular potentials in the dog Purkinje system, Circ. Res., 30, 505-519 (1972)
[42] Stampfli, R.; Waxman, S. G.; Ritchie, J. M., Demyelinating Disease, Basic Clinical Electrophysiology (1981), Raven: Raven New York
[43] Stegeman, D.; de Weerd, J.; Eijkman, E., A volume conductor study of compound action potentials of nerve in situ: The forward problem, Biol. Cybernet., 33, 97-111 (1979) · Zbl 0399.92005
[44] Wallinga-de Jonge, W.; Gielen, F. L.H.; Wirtz, P.; de Jonge, P.; Broenink, J. L., The different intracellular action potentials of fast and slow muscle fibers, Electroenceph. Clin. Neurophysiol., 60, 539-547 (1985)
[45] Wani, A. M.; Guha, S. K., Synthesizing of a motor unit potential based on the sequential firing of muscle fibers, Med. & Biol. Engrg. & Comput., 18, 719-726 (1980)
[46] Wijesinghe, R. S., A comparison of conduction velocity distributions from a nerve bundle using magnetic and electric techniques, (Ph.D. Thesis (1988), Vanderbilt Univ)
[47] Wilson, O. B.; Clark, J. W.; Ganapathy, N.; Harman, T. L., Potential field from an inhomogeneous, anisotropic volume conductor—the forward problem, IEEE Trans. Biomed. Engrg., BME-32, 1032-1041 (1985)
[48] Woosley, J. K.; Roth, B. J.; Wikswo, J. P., The magnetic field of a single axon: A volume conductor model, Math. Biosci., 76, 1-36 (1985) · Zbl 0567.92004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.